COPULA BASED VaR APPROACH FOR EUROPEAN STOCKS PORTFOLIO
Abstract
The paper gives stochastic assessments of the financial crisis and discusses the Value at Risk European stocks from the point of view of copula based approach. Copula techniques can be based on the connection between rank correlation and certain one–parameter bivariate copulas. This relation allows easy calibration of the parameters. We use more general numerical calibration techniques that are based on maximum likelihood estimation (MLE). Using this approach we want to estimate VaR of the EU stocks portfolio using Monte Carlo simulation. The focus will be on modelling the interdependence between two risk factor returns. We suppose that the risk factor returns have some assumed marginal distributions, which need not be identical, and their dependency is modelled with copulas. We find that standard parametric copula functions (such as Gaussian) are not able to provide a good fit to the data. This is especially true when one or more of the marginal distributions has fat tails. We overcome this problem by fitting a t–copula with different marginal which can approximate any possible shape for the joint density.References
Alexander C. (2008). Market Risk Analysis. Chichester, England: John Wiley & Sons.
Bollerslev, T. (1987). A conditional heteroskedastic time series model for speculative prices and rates of return. Review of Economics and Statistics, 69, 542-547. http://dx.doi.org/10.2307/1925546
Ceske, R. & Hernandez, J. (1999). Where Theory Meets Practice. Operational Risk Special Report. Risk, 11, 17–20.
Chai, S. & Guo, Ch. (2011). Copula-Based Dependence Analysis of U.S. Stock Index and Futures Time Series in Financial Crisis. International Business and Management, 3 (1), 82-85.
Cherubini, U., Luciano, E. & Vecchiato, W. (2004). Copula methods in finance. London, England: John Wiley & Sons. http://dx.doi.org/10.1002/9781118673331
Embrechts, P., Lindskog, F. & McNeil, A. J. (2011). Modelling dependence with copulas and application to risk management: Handbook of Heavy Tailed Distributions in Finance. Amsterdam, Netherlands: Elsevier. PMid:11312524
Embrechts, P., McNeil, A. J. & Straumann, D. (2001). Correlation and Dependence in Risk Management. Properties and Pitfalls. Cambridge, England: Cambridge University Press.
Fantazzini, D. (2009). Three-stage semi-parametric estimation of t-copulas: Asymptotics, finite-sample properties and computational aspects. Computational Statistics and Data Analysis, http://dx.doi.org/10.1016/j.csda.2009.02.004
Frees, E. W. & Valdez, E. A. (1998). Understanding relationships using copulas. North American Actuarial Journal, 2 (1), 1-25. http://dx.doi.org/10.1080/10920277.1998.10595667
Joe, H. (1997). Multivariate Models and Dependence Concepts. London, England: Chapman & Hall. http://dx.doi.org/10.1201/b13150
Kole, E., Koedijk, K. & Verbeek, M. (2005). Testing copulas to model financial dependence. Retrieved March, 10, 2013, from http://www.fbv.kit.edu/symposium/10th/papers/Kole_Koedijk_Verbeek%20-%20Testing%20copulas%20to%20model%20financial%20dependence.pdf
Li, D. X. (2000). On default correlation: a copula function approach. (Working Paper of RiskMetrics Group). Retrieved March, 10, 2013, from http://www.stat.ncsu.edu/people/bloomfield/courses/st810j/wrap/defcorr.pdf
Lindskog, F., McNeil, A. J. & Schmock, U. (2003). Kendall’s tau for elliptical distributions. Heidelberg, Germany: Physica Verlag. PMCid:2747540
McNeil, A. J., Frey, R. & Embrechts, P. (2005). Quantitative Risk Management. Princeton, NJ: Princeton University Press.
Meucci, A. (2005). Risk and Asset Allocation. Berlin, Germany: Springer Verlag. http://dx.doi.org/10.1007/978-3-540-27904-4
Nelsen, R. B. (1998). An Introduction to Copulas. Berlin, Germany: Springer.
Sklar, A. (1959). Fonctions de répartition à n dimensions et leurs marges [Distribution functions in n dimensions and their margins]. Publications de 1'institut de statistique de 1'Université de Paris, 8, 229-231.
Zhang, J. & Ng, W. L. (2010). EML-estimation of multivariate t copulas with heuristic optimization. In Proceedings of International Conference on Computer Science and Information Technology 2010, p. 469-473.
Zhang, J. & Ng, W. L. (2010). Exact Maximum Likelihood Estimation for Copula Models. (Research report of COMISEF). Retrieved March 10, 2013, from http://comisef.eu/files/wps038.pdf
Alexander C. (2008). Market Risk Analysis. Chichester, England: John Wiley & Sons.
Copyright information
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (Creative Commons Attribution License 3.0 - CC BY 3.0) that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
info@iseic.cz, www.iseic.cz, ojs.journals.cz