• Mária Bohdalová Comenius University in Bratislava
  • Michal Greguš Comenius University in Bratislava


The paper gives stochastic assessments of the financial crisis and discusses the Value at Risk European stocks from the point of view of copula based approach. Copula techniques can be based on the connection between rank correlation and certain one–parameter bivariate copulas. This relation allows easy calibration of the parameters. We use more general numerical calibration techniques that are based on maximum likelihood estimation (MLE). Using this approach we want to estimate VaR of the EU stocks portfolio using Monte Carlo simulation. The focus will be on modelling the interdependence between two risk factor returns. We suppose that the risk factor returns have some assumed marginal distributions, which need not be identical, and their dependency is modelled with copulas. We find that standard parametric copula functions (such as Gaussian) are not able to provide a good fit to the data. This is especially true when one or more of the marginal distributions has fat tails. We overcome this problem by fitting a t–copula with different marginal which can approximate any possible shape for the joint density.


Alexander C. (2008). Market Risk Analysis. Chichester, England: John Wiley & Sons.

Bollerslev, T. (1987). A conditional heteroskedastic time series model for speculative prices and rates of return. Review of Economics and Statistics, 69, 542-547.

Ceske, R. & Hernandez, J. (1999). Where Theory Meets Practice. Operational Risk Special Report. Risk, 11, 17–20.

Chai, S. & Guo, Ch. (2011). Copula-Based Dependence Analysis of U.S. Stock Index and Futures Time Series in Financial Crisis. International Business and Management, 3 (1), 82-85.

Cherubini, U., Luciano, E. & Vecchiato, W. (2004). Copula methods in finance. London, England: John Wiley & Sons.

Embrechts, P., Lindskog, F. & McNeil, A. J. (2011). Modelling dependence with copulas and application to risk management: Handbook of Heavy Tailed Distributions in Finance. Amsterdam, Netherlands: Elsevier. PMid:11312524

Embrechts, P., McNeil, A. J. & Straumann, D. (2001). Correlation and Dependence in Risk Management. Properties and Pitfalls. Cambridge, England: Cambridge University Press.

Fantazzini, D. (2009). Three-stage semi-parametric estimation of t-copulas: Asymptotics, finite-sample properties and computational aspects. Computational Statistics and Data Analysis,

Frees, E. W. & Valdez, E. A. (1998). Understanding relationships using copulas. North American Actuarial Journal, 2 (1), 1-25.

Joe, H. (1997). Multivariate Models and Dependence Concepts. London, England: Chapman & Hall.

Kole, E., Koedijk, K. & Verbeek, M. (2005). Testing copulas to model financial dependence. Retrieved March, 10, 2013, from

Li, D. X. (2000). On default correlation: a copula function approach. (Working Paper of RiskMetrics Group). Retrieved March, 10, 2013, from

Lindskog, F., McNeil, A. J. & Schmock, U. (2003). Kendall’s tau for elliptical distributions. Heidelberg, Germany: Physica Verlag. PMCid:2747540

McNeil, A. J., Frey, R. & Embrechts, P. (2005). Quantitative Risk Management. Princeton, NJ: Princeton University Press.

Meucci, A. (2005). Risk and Asset Allocation. Berlin, Germany: Springer Verlag.

Nelsen, R. B. (1998). An Introduction to Copulas. Berlin, Germany: Springer.

Sklar, A. (1959). Fonctions de répartition à n dimensions et leurs marges [Distribution functions in n dimensions and their margins]. Publications de 1'institut de statistique de 1'Université de Paris, 8, 229-231.

Zhang, J. & Ng, W. L. (2010). EML-estimation of multivariate t copulas with heuristic optimization. In Proceedings of International Conference on Computer Science and Information Technology 2010, p. 469-473.

Zhang, J. & Ng, W. L. (2010). Exact Maximum Likelihood Estimation for Copula Models. (Research report of COMISEF). Retrieved March 10, 2013, from

Alexander C. (2008). Market Risk Analysis. Chichester, England: John Wiley & Sons.