COMPARATIVE ANALYSIS OF NON-CONTACT ULTRASONIC METHODS FOR DEFECT ESTIMATION OF COMPOSITES IN REMOTE AREAS

  • Kumar Anubhav Tiwari Ultrasound Institute, Kaunas University of Technology, Kaunas
  • Renaldas Raisutis Ultrasound Institute, Kaunas University of Technology, Kaunas
Keywords: ultrasonic, defects, non-contact, composite materials, laser

Abstract

There are various ultrasonic systems, developed for the effective testing and estimation of defect parameters in composite materials. Non-contact ultrasonic testing has already achieved significance over traditional contact methods that require coupling of media and are not well suited for the transmission of surface acoustic waves (SAW), which can cover a large area of structure under investigation. This paper compares approaches of air-coupled transmission/reception, laser ultrasonic, and electromagnetic acoustic transducer (EMAT), for testing and verification of composites and defect estimation in remote areas. It reviews the various practical applications. The study found the hybrid solution, consisting of the laser system as a transmitter and the air-coupled method as a detector, is the best among all.

References

Baldwin, K. C., Berndt, T. P., & Ehrlich, M. J. (1999). Narrowband laser generation/air-coupled detection: Ultrasonic system for on-line process control of composites. Ultrasonics, 37(5), 329–334. DOI:10.1016/s0041-624x(99)00011-6

Birnbaum, G., & Auld, B. A. (1998). Sensing for Materials Characterization, Processing, and Manufacturing. American Society for Nondestructive Testing, Incorporated.

Callister, W. D., & Rethwisch, D. G. (2007). Materials science and engineering: an introduction (Vol. 7, pp. 665-715). New York: Wiley.

Campagne, B., Voillaume, H., & Gouzerh, L. (2013). Laser Ultrasonic Developments for NDT of Aeronautic Composite Parts. In the 13th International Symposium on Nondestructive Characterization of Materials (NDCM-XIII), Le Mans, France (pp. 20-24).

Dai, X. W. (1996). Electromagnetic acoustic transducers: physical principles and finite element modeling. NDT and E International, 4(29), 251.

Dewhurst, R. J., Boonsang, S., & Murray, P. R. (2003). A laser-ultrasound/EMAT imaging system for near surface examination of defects. Nondestructive characterization of materials, 13-20.

Djordjevic, B. B. (1993). Advanced ultrasonic probes for scanning of large structures. Proc. Ultrasonic International, 93, 227-231.

Djordjevic, B. B. (2009, September). Ultrasonic characterization of advanced composite materials. In the 10th International Conference of the Slovenian Society for Non-Destructive Testing (Application of Contemporary Non-Destructive Testing in Engineering), Ljubljana, Slovenia (pp. 47-57).

Frost, H. M., Sethares, J. C., & Szabo, T. L. (1977). Rotation sensing through electromagnetic-surface-acoustic-wave transduction. Journal of Applied Physics, 48(1), 52. DOI:10.1063/1.323359

Gori, M., Giamboni, S., Alessio, E. D’, Ghia, S., Cernuschi, F., & Piana, G. M. (1996). Guided waves by EMAT transducers for rapid defect location on heat exchanger and boiler tubes. Ultrasonics, 34(2-5), 311–314. DOI:10.1016/0041-624x(95)00094-j

Grandia, W. A., & Fortunko, C. M. (1995, November). NDE applications of air-coupled ultrasonic transducers. In Ultrasonics Symposium, 1995. Proceedings, 1995 IEEE (Vol. 1, pp. 697-709). IEEE.

Green, R. E. (2004). Non-contact ultrasonic techniques. Ultrasonics, 42(1-9), 9–16.

Hutchins, D. A., Wright, W. M. D., Hayward, G., & Gachagan, A. (1994). Air-coupled piezoelectric detection of laser-generated ultrasound. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 41(6), 796–805. DOI:10.1109/58.330260

Jasiuniene, E., Raisutis, R., Sliteris, R., Voleisis, A., Vladisauskas, A., Mitchard, D., & Amos, M. (2009). NDT of wind turbine blades using adapted ultrasonic and radiographic techniques. Insight - Non-Destructive Testing and Condition Monitoring, 51(9), 477–483. DOI:10.1784/insi.2009.51.9.477

Kazys, R., Demcenko, A., Zukauskas, E., & Mazeika, L. (2006). Air-coupled ultrasonic investigation of multi-layered composite materials. Ultrasonics, 44, e819–e822. DOI:10.1016/j.ultras.2006.05.112

Kazys, R., Vladisauskas, A., & Zukauskas, E. (2014). Wideband air–coupled ultrasonic transducers. Ultragarsas" Ultrasound", 52(3), 21-28.

Lanza di Scalea, F., & Green Jr, R. E. (1999a). High-sensitivity laser-based ultrasonic C-scan system for materials inspection. Experimental mechanics, 39(4), 329-334.

Lanza di Scalea, F., & Green, R. E. (1999b). Experimental observation of the intrusive effect of a contact transducer on ultrasound propagation. Ultrasonics, 37(3), 179–183. DOI:10.1016/s0041-624x(98)00059-6

Loertscher, H., Grandia, B., Strycek, J., & Grandia, W. A. (1996). Airscan transducers, technique and applications. NDT. net, 1(9), 1-4.

Monchalin, J. P., Heon, R., Bussiere, J. F., & Farahbakhsh, B. (1987). Laser-ultrasonic determination of elastic constants at Ambient and elevated temperatures. In Nondestructive Characterization of Materials II (pp. 717–723). DOI:10.1007/978-1-4684-5338-6_74

Murray, P. R., & Dewhurst, R. J. (2002). Application of a laser/EMAT system for using shear and LS mode converted waves. Ultrasonics, 40(1-8), 771–776. DOI:10.1016/s0041-624x(02)00213-5.

Oursler, D. A., & Wagner, J. W. (1995). Narrow-band hybrid pulsed laser/EMAT system for non-contact ultrasonic inspection using angled shear waves. In Review of Progress in Quantitative Nondestructive Evaluation (pp. 553-560). Springer US.

Pierce, S. G., Culshaw, B., Philp, W. R., Lecuyer, F., & Farlow, R. (1997). Broadband lamb wave measurements in aluminum and carbon/glass fibre reinforced composite materials using non-contacting laser generation and detection. Ultrasonics, 35(2), 105–114. DOI:10.1016/s0041-624x (96)00107-2

Raisutis, R., Jasiuniene, E., & Zukauskas, E. (2008). Ultrasonic NDT of wind turbine blades using guided waves. Ultrasound. ISSN1392-2114. Kaunas: Technologija, 63(1), 7-11.

Raisutis, R., Jasiuniene, E., Sliteris, R., & Vladisauskas, A. (2008). The review of non-destructive testing techniques suitable for inspection of the wind turbine blades. Ultragarsas (ultrasound), 63(1), 26-30.

Schindel, D. W. (1997). Air-coupled generation and detection of ultrasonic bulk waves in metals using micromachined capacitance transducers. Ultrasonics, 35(2), 179–181. http://doi.org/10.1016/S0041-624X(96)00103-5

Schwartz, M. M. (1984). Composite materials handbook. McGraw-Hill.

Scruby, C. B., Dewhurst, R. J., Hutchins, D. A., & Palmer, S. B. (1980). Quantitative studies of thermally generated elastic waves in laser-irradiated metals. Journal of Applied Physics, 51(12), 6210. DOI:10.1063/1.327601

Smith, R. A. (2009). Composite defects and their detection. Materials Science and Engineering, 3, 103-143.

Wright, W. M. D., Hutchins, D. A., Gachagan, A., & Hayward, G. (1996). Polymer composite material characterization using a laser/air-transducer system. Ultrasonics, 34(8), 825–833. DOI:10.1016/s0041-624x(96)00083-2.

Zhang, K., Zhou, Z., & Zhou, J. (2015). Application of laser ultrasonic method for on-line monitoring of friction stir spot welding process. Applied Optics, 54(25), 7483. DOI:10.1364/ao.54.007483

Zhou, Z., & Sun, G. (2013) “Non-Contact Testing of Aeronautical Composite Laminated Structures Using Laser Ultrasonics”, In 2013 International congress on Ultrasonics Singapore.

Zukauskas, E., Cicenas, V., & Kazys, R. (2005). Application of air–coupled ultrasonic technique for sizing of delamination type defect in multilayered materials. Ultragarsas (Ultrasound), (54), 7-11.

Zukauskas, E., & Kazys, R. (2007). Investigation of the delamination type defects parameters in multilayered GLARE3-3/2 composite material using air–coupled ultrasonics technique. Ultragarsas (Ultrasound), 62, 44-48.

Published
2016-09-26