HIGHER CTX-M, TEM, AND SHV EXTENDED-SPECTRUM BETA-LACTAMASE PLASMID GENE COMBINATION FREQUENCY IN ESBL PRODUCING KLEBSIELLA PNEUMONIAE COMPARED WITH ESBL PRODUCING ESCHERICHIA COLI

  • Vita Skuja Riga Stradins University
  • Katrīna Pekarska Riga Stradins University
  • Aleksejs Derovs Riga Stradins University
  • Ludmila Vīksna Riga Stradins University
  • Linda Piekuse Riga Stradins University
  • Inga Kempa Riga Stradins University
  • Una Caune Riga Stradins University
  • Dace Rudzīte Riga Stradins University
  • Aivars Lejnieks Riga Stradins University
  • Angelika Krūmiņa Riga Stradins University
Keywords: Extended-spectrum beta-lactamase, CTX-M, TEM, SHV, Klebsiella pneumoniae, Escherichia coli

Abstract

Introduction:Extended-spectrum beta-lactamase (ESBL) producing Enterobacteriaceae confer antibiotic resistance to broad-spectrum penicillins, cephalosporins, using ESBL genes CTX-M, TEM, SHV, which are encoded in bacterial plasmid genome.

Methods: We compared plasmid CTX-M, TEM, and SHV ESBL gene combinations in ESBL producing Escherichia coliand Klebsiella pneumoniae. Altogether, 136 ESBL producing Enterobacteriaceae isolation cases were analyzed.

Results:The ESBL producing Enterobacteriaceae, mostly K. pneumoniae (n = 66; 48.53%), E. coli (n = 36; 26.47%), were isolated from 52 (38.2%) female and 84 (61.8%) male patients from Riga East Clinical University Hospital. Overall,132 isolates (97.06%) registered positive for the plasmid CTX-M gene, 97 isolates (71.32%) for the plasmid TEM gene, and 87 isolates (63.97%) for the plasmid SHV gene.Patients with the three ESBL plasmid gene (CTX-M+ TEM+ SHV+) combination were significantly older (67.11 ± 14.16 years) than patients with other gene combinations (59.63 ± 18.14 years; p = 0.047). Plasmid SHV gene frequency was higher in K. pneumoniae (p < 0.001). The K. pneumoniae mostly presented with the three plasmid ESBL gene (CTX-M+ TEM+ SHV+) combination, whereas E. coli presented with other gene combinations (p = 0.014).

Conclusions: Klebsiella Pneumoniae, more often, presented with the plasmid SHV ESBL gene and the three ESBL gene (CTX-M+ TEM+ SHV+) combination, compared to E. coli. Older patients with ESBL producing Enterobacteriaceae infection, more often, presented with the three ESBL gene (CTX-M+ TEM+ SHV+) combination, compared to younger patients with the infection.

References

Alekshun, M. N., & Levy, S. B. (2007). Molecular Mechanisms of Antibacterial Multidrug Resistance. Cell, 128(6), 1037–1050. http://doi.org/10.1016/j.cell.2007.03.004

Cantón, R., Novais, a., Valverde, a., Machado, E., Peixe, L., Baquero, F., & Coque, T. M. (2008). Prevalence and spread of extended-spectrum β-lactamase-producing Enterobacteriaceae in Europe. Clinical Microbiology and Infection, 14(SUPPL. 1), 144–153. http://doi.org/10.1111/j.1469-0691.2007.01850.x

Coque, T. M., Baquero, F., & Canton, R. (2008). Increasing prevalence of ESBL-producing Enterobacteriaceae in Europe. Euro Surveillance : Bulletin Europ??en Sur Les Maladies Transmissibles = European Communicable Disease Bulletin, 13(47), 1–11. http://doi.org/10.1128/AAC.49.7.2693-2700.2005

Edelstein, M., Pimkin, M., Palagin, I., Edelstein, I., & Stratchounski, L. (2003). Prevalence and Molecular Epidemiology of CTX-M Extended-Spectrum -Lactamase-Producing Escherichia coli and Klebsiella pneumoniae in Russian Hospitals. Antimicrobial Agents and Chemotherapy, 47(12), 3724–3732. http://doi.org/10.1128/AAC.47.12.3724-3732.2003

EUCAST: Resistance mechanisms (2015). Retrieved December 20, 2015, from http://www.eucast.org/resistance_mechanisms/

Hayakawa, K., Gattu, S., Marchaim, D., Bhargava, A., Palla, M., Alshabani, K., & Kaye, K. S. (2013). Epidemiology and risk factors for isolation of Escherichia coli producing CTX-M-type extended-spectrum β-lactamase in a large U.S. Medical Center. Antimicrobial Agents and Chemotherapy, 57(8), 4010–8. http://doi.org/10.1128/AAC.02516-12

Kargar, M., Kargar, M., Jahromi, M. Z., Najafi, A., & Ghorbani-Dalini, S. (2014). Molecular detection of ESBLs production and antibiotic resistance patterns in Gram negative bacilli isolated from urinary tract infections. Indian Journal of Pathology & Microbiology, 57(2), 244–8. http://doi.org/10.4103/0377-4929.134688

Kassakian, S. Z., & Mermel, L. a. (2014). Changing epidemiology of infections due to extended spectrum beta-lactamase producing bacteria. Antimicrobial Resistance and Infection Control, 3(1), 9. http://doi.org/10.1186/2047-2994-3-9

Kolar, M., Latal, T., Cermak, P., Bartonikova, N., Chmelarova, E., Sauer, P., & Kesselova, M. (2006). Prevalence of extended-spectrum ??-lactamase-positive Klebsiella pneumoniae isolates in the Czech Republic. International Journal of Antimicrobial Agents, 28(1), 49–53. http://doi.org/10.1016/j.ijantimicag.2006.02.012

Lee, J. H., Bae, I. K., & Lee, S. H. (2012). New definitions of extended-spectrum β-lactamase conferring worldwide emerging antibiotic resistance. Medicinal Research Reviews, 32(1), 216–32. http://doi.org/10.1002/med.20210

Lillo, J., Pai, K., Balode, A., Makarova, M., Huik, K., Kõljalg, S., & Sepp, E. (2014). Differences in Extended-Spectrum Beta-Lactamase Producing Escherichia coli Virulence Factor Genes in the Baltic Sea Region, 2014.

Lin, C. F., Hsu, S. K., Chen, C. H., Huang, J. R., & Lo, H. H. (2010). Genotypic detection and molecular epidemiology of extended-spectrum beta-lactamase-producing Escherichia coli and Klebsiella pneumoniae in a regional hospital in central Taiwan. Journal of Medical Microbiology, 59(Pt 6), 665–71. http://doi.org/10.1099/jmm.0.015818-0

Manoharan, A., Premalatha, K., Chatterjee, S., & Mathai, D. (2011). Correlation of TEM, SHV and CTX-M extended-spectrum beta lactamases among Enterobacteriaceae with their in vitro antimicrobial susceptibility. Indian Journal of Medical Microbiology, 29(2), 161–4. http://doi.org/10.4103/0255-0857.81799

Mehrgan, H., & Rahbar, M. (2008). Prevalence of extended-spectrum ??-lactamase-producing Escherichia coli in a tertiary care hospital in Tehran, Iran. International Journal of Antimicrobial Agents, 31(2), 147–151. http://doi.org/10.1016/j.ijantimicag.2007.09.008

Mengistu, A., Gaeseb, J., Uaaka, G., Ndjavera, C., Kambyambya, K., Indongo, L., & Sagwa, E. (2013). Antimicrobial sensitivity patterns of cerebrospinal fluid (CSF) isolates in Namibia: implications for empirical antibiotic treatment of meningitis. Journal of Pharmaceutical Policy and Practice, 6, 4. http://doi.org/10.1186/2052-3211-6-4

Moor, C. T., Roberts, S. A., Simmons, G., Briggs, S., Morris, A. J., Smith, J., & Heffernan, H. (2008). Extended-spectrum beta-lactamase (ESBL)-producing enterobacteria: factors associated with infection in the community setting, Auckland, New Zealand. The Journal of Hospital Infection, 68(4), 355–62. http://doi.org/10.1016/j.jhin.2008.02.003

Paterson, D. L., & Bonomo, R. A. (2005). Extended-Spectrum -Lactamases: a Clinical Update. Clinical Microbiology Reviews, 18(4), 657–686. http://doi.org/10.1128/CMR.18.4.657-686.2005

Peralta, G., Lamelo, M., Alvarez-García, P., Velasco, M., Delgado, A., Horcajada, J. P., & Capdevila, J. A. (2012). Impact of empirical treatment in extended-spectrum beta-lactamase-producing Escherichia coli and Klebsiella spp. bacteremia. A multicentric cohort study. BMC Infectious Diseases, 12(1), 245. http://doi.org/10.1186/1471-2334-12-245

Poirel, L., Naas, T., & Nordmann, P. (2008). Genetic support of extended-spectrum ??-lactamases. Clinical Microbiology and Infection, 14(SUPPL. 1), 75–81. http://doi.org/10.1111/j.1469-0691.2007.01865.x

Ruiz de Alegría, C., Rodríguez-Baño, J., Cano, M. E., Hernández-Bello, J. R., Calvo, J., Román, E., & Martínez-Martínez, L. (2011). Klebsiella pneumoniae strains producing extended-spectrum beta-lactamases in Spain: microbiological and clinical features. Journal of Clinical Microbiology, 49(3), 1134–6. http://doi.org/10.1128/JCM.02514-10

Sasirekha, B. (2013). Prevalence of ESBL, AmpC β-lactamases and MRSA among uropathogens and its antibiogram. Retrieved from http://eldorado.tu-dortmund.de/handle/2003/30327

Shaikh, S., Fatima, J., Shakil, S., Rizvi, S. M. D., & Kamal, M. A. (2015). Antibiotic resistance and extended spectrum beta-lactamases: Types, epidemiology and treatment. Saudi Journal of Biological Sciences, 22(1), 90–101. http://doi.org/10.1016/j.sjbs.2014.08.002

Spadafino, J. T., Cohen, B., Liu, J., & Larson, E. (2014). Temporal trends and risk factors for extended-spectrum beta-lactamase-producing Escherichia coli in adults with catheter-associated urinary tract infections. Antimicrobial Resistance and Infection Control, 3(1), 2012–2015. http://doi.org/10.1186/s13756-014-0039-y

Tacconelli, E., Cataldo, M. A., Dancer, S. J., De Angelis, G., Falcone, M., Frank, U., & Cookson, B. (2014). ESCMID guidelines for the management of the infection control measures to reduce transmission of multidrug-resistant Gram-negative bacteria in hospitalized patients. Clinical Microbiology and Infection : The Official Publication of the European Society of Clinical Microbiology and Infectious Diseases, 20 Suppl 1, 1–55. http://doi.org/10.1111/1469-0691.12427

Takaba, K., Shigemura, K., Osawa, K., Nomi, M., Fujisawa, M., & Arakawa, S. (2014). Emergence of extended-spectrum ??-lactamase-producing Escherichia coli in catheter-associated urinary tract infection in neurogenic bladder patients. American Journal of Infection Control, 42(3), e29–e31. http://doi.org/10.1016/j.ajic.2013.11.018

Talukdar, P. K., Rahman, M., Rahman, M., Nabi, A., Islam, Z., Hoque, M. M., & Islam, M. A. (2013). Antimicrobial resistance, virulence factors and genetic diversity of Escherichia coli isolates from household water supply in Dhaka, Bangladesh. PloS One, 8(4), e61090. http://doi.org/10.1371/journal.pone.0061090

The New β-Lactamases - NEJM. (2015). Retrieved June 4, 2015, from http://www.nejm.org/doi/full/10.1056/NEJMra041359

Tumbarello, M., Sanguinetti, M., Montuori, E., Trecarichi, E. M., Posteraro, B., Fiori, B., & Spanu, T. (2007). Predictors of mortality in patients with bloodstream infections caused by extended-spectrum-beta-lactamase-producing Enterobacteriaceae: importance of inadequate initial antimicrobial treatment. Antimicrobial Agents and Chemotherapy, 51(6), 1987–94. http://doi.org/10.1128/AAC.01509-06

Wu, T. L., Siu, L. K., Su, L. H., Lauderdale, T. L., Lin, F. M., Leu, H. S., & Ho, M. (2001). Outer membrane protein change combined with co-existing TEM-1 and SHV-1 beta-lactamases lead to false identification of ESBL-producing Klebsiella pneumoniae. The Journal of Antimicrobial Chemotherapy, 47(6), 755–61. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/1138910

Published
2016-09-17