INFLUENCE OF AGE AND GENDER ON THE STRENGTH OF BLOOD VESSELS

  • Zyta Kuzborska Technical University
Keywords: blood vessel, flow, local blood pressure, stress

Abstract

This article examines the effects of cardiovascular diseases that alter the diameter, wall thickness, and length of blood vessels. Depending on form and size of the damage, blood flow velocity, blood pressure, and stresses are affected in areas of diseased blood vessels. Through stimulating the deviations in the geometric shape of a blood-vessel wall, local blood pressure and stresses can arise from flow variation of blood vessels. This rise affects the blood-vessel wall and causes critical stresses likely to produce fissures in the blood vessels. It was found, that blood vessel pathology could cause blood flow velocity to increase up to 2.2 times and local blood pressure up to 3.4 times, and that human aging may have a significant influence on blood-vessel strength.

References

Balázs, T., Bognár, E., Zima, E., & Dobránszky, J. (2008). Mechanical properties of coronary vein – In vitro evaluation of longitudinal and transversal samples. MAGYAR BIOMECHANIKAI KONFERENCIA – A-0032. 24-32.

Birgit Kantor, M. D., Eike Nagel, M. D., Paul Schoenhagen, M. D., Jörg Barkhausen, M. D., Thomas, C., & Gerber, M. D. (2009). Coronary Computed Tomography and Magnetic Resonance Imaging. Curr Probl Cardiol, 34(4): 145-217. DOI: 10.1016/j.cpcardiol.2008.12.002

Cecelja, M, & Chowienczyk, P. (2012). Role of arterial stiffness in cardiovascular disease. Journal of the Royal Society of Medicine Cardiovascular Disease, 1:11. DOI 10.1258/cvd.2012.012016

Hyun Soo Kim, M. D., Kyoung, I. & Cho, M. D. (2013). Association of Carotid Artery Parameters of Atherosclerosis in Coronary Artery Disease. Journal Cardiovsc Ultrasound, 21 (2): 72-80.

Lantz, J., Renner, J., & Karlsson, M. (2011). Wall shear stress in a subject specific human aorta - Influence of fluid-structure interaction. International Journal of Applied Mechanics, (3), 4, 759-778. http://dx.doi.org/10.1142/S1758825111001226

Laucevičius, A., Rinkūnienė, E., Skorniakov, V., Petrulionienė, Ž., Kasiulevičius, V., Jatužis, D., Ryliškytė, L., Badarienė, J., Klumbienė, J., Šlapikas, R., & Kizlaitis, R. (2013). High-Risk Profile in a Region with Extremely Elevated Cardiovascular Mortality. Hellenic Journal of Cardiology, 54: 441-447.

Long, Q. (2001). Numerical Investigation of Physiologically Realistic Pulsatile Flow Through Arterial stenosis, Journal of Biomechanics, 34: 1229-1242.

Mandal, P. K. (2005). An Unsteady Analysis of Non-Newtonian Blood Flow through Tapered Arteries with a Stenosis, International Journal of Non-Linear Mechanics, 40: 151-164.

Mariūnas, M., & Uzdilaitė, G. (2006). Reserch on the Influence of Pathology Level to Stresses in Elastic Arterines. Journal of Vibroengineering, Vol.8, No 3, 30-34.

Mariūnas, M., & Kuzborska, Z. (2011). Pressure dynamics of blood vessels when modeling pathological processes, J. of Vibroengineering, 13(2), 269-275.

Mariūnas, M., Kuzborska, Z., & Šešok, A. (2013). Research of pathology degree and kind influence on the stress in damaged blood vessels areas. Journal of Vibroengineering, Vol. 15 Issue 4, 2029-2034.

Meola, M, & Petrucci, I. (2008). Color Doppler sonography in the study of chronic ischemic nephropathy. Journal of Ultrasound, 11(2): 55-73.

Michlek, E., Zyra, A., & Lagan, S. (2013). Current Problems of Biomechanics. The study of mechanical properties of artificial blood vessels, Vol. 7, 99-104.

Milnor, W. R. (2009). Hemodynamics. Williams and Vilkins, 413-419.

Panniera, B. M., Avolio, A. P., Hoeksc, A., Mancia, G., & Takazawa, K. (2002). Methods and devices for measuring arterial compliance in humans, Am J Hypertens, Vol. 15, Issue 8, 743-753.

Petrulionienė, Ž., & Apanavičienė, D. A. (2010). Evaluation of arterial hypertension control and treatment in daily practice of family physicians. Medicina (Lithuania), 46(10):657-663.

Pickering, T. G. (2002). Principles and techniques of blood pressure measurement, Cardiology Clinics, Vol. 20, Issue 2, 207-223.

Roger, V. L., Go, A. S., Lloyd-Jones, D. M., Benjamin, E. J., Berry, J. D., Borden, W. B., Bravata Dawn, M., Dai, S., Ford, E. S., Fox, C. S., Fullerton, H. J., Gillespie, C., Hailpern, S. M., Heit, J. A., Howard, V. J., Kissela, B. M., Kittner, S. J., Lackland, D. T., Lichtman, J. H., Lisabeth, L. D., Makuc, D. M., Marcus, G. M., Marelli, A., Matchar, D. B., Moy, C. S., Mozaffarian, D., Mussolino, M. E., Nichol, G., Paynter, N. P., Soliman, E. Z., Sorlie, P. D., Sotoodehnia, N., Turan, T. N., Virani, S. S., Wong, N. D., Woo, D., & Turner, M. B. (2012). Executive summary: heart disease and stroke statistics - 2012 update: a report from the American Heart Association, 125(1):188-97. http://dx.doi.org/10.1161/CIR.0b013e3182456d46irculation.

Rosamond, W., Flegal, K., Friday, G., Furie, K., Go, A., Greenlund, K., Haase, N., Ho, M., Howard, V., Kissela, B., Kittner, S., Lloyd Jones, D., McDer-mott, M., Meigs, J., Moy, C., Nichol, G., O’Donnell, C. J., Roger, V., Rumsfeld, J., Sorlie, P., Steinberger, J., Thom, T., Wasserthiel-Smoller, S., & Hong, Y. (2007). Heart disease and stroke statistics - 2007 update: a report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Circulation, 115(5): 69-171. http://dx.doi.org/10.1161/CIRCULATIONAHA.106.179918

Steele, B. N., Wan, J., Ku, J. P., Hughes, T. J., & Taylor, C. A. (2003). In Vivo Validation of a One-Dimensional Finite-Element Method for Predicting Blood Flow in Cardiovascular Bypass Grafts, IEEE Trans Biomed Eng., 50(6), 649-656.

Taylor, C. A., & Draney, M. T. (2004). Experimental and Computational Methods in Cardiovascular Fluid Mechanics, Annual Review of Fluid Mechanics, Vol. 36, 197-231.

Taylor, C. A., & Steinman, D. A. (2005). Flow Imaging and Computing: Large Artery Hemodynamics, Annals of Biomedical Engineering, 33(12), 1704-1709.

Vignon, I., & Taylor, C. A. (2004). Outflow Boundary Conditions for One-Dimensional Finite Element Modeling of Blood Flow and Pressure Waves in Arteries, Wave Motion, 39(4), 361-374.

Vignon-Clementel, I. Figueroa, C. A., Jansen, K. E., & Taylor, C. A. (2010). Outflow boundary conditions for 3D simulations of non-periodic blood flow and pressure fields in deformable arteries, Computer methods in Biomechanics and Biomedical Engineering, 13, 5, p. 625-640.

Wang, J. J., & Parker, K. H. (2004). Wave propagation in a model of the arterial circulation, J Biomech, 37(4), 457-470.

Published
2016-09-17