POST-MORTEM INTERVAL ESTIMATION BY CEREBRO-SPINAL FLUID FILMS POLARIZATION IMAGES OPTICAL STRUCTURE CHANGING

  • Marta Garazdiuk Higher State Educational Establishment of Ukraine “Bukovinian State Medical University”
  • Viktor Bachynskіy Higher State Educational Establishment of Ukraine “Bukovinian State Medical University”
  • Oleg Wanchuliak Higher State Educational Establishment of Ukraine “Bukovinian State Medical University”
  • Oleksandr Garazdiuk Higher State Educational Establishment of Ukraine “Bukovinian State Medical University”
  • Aleksandr Ushenko Higher State Educational Establishment of Ukraine “Bukovinian State Medical University”
Keywords: Post-mortem, interval, cerebrospinal, polarization, ellipticity

Abstract

INTRODUCTION: Post-mortem interval (PMI) estimation has been and remains one of the main issues of forensic medicine. Complex photometric, polarization, and correlation techniques of biological tissue (BT) structure are crucial in this area.

OBJECTIVES: The purpose of this study is to develop and test two-dimensional Stokes-polarimetric mapping of biological layers to evaluate the accuracy of PMI assessments using statistical analysis of post-mortem changes and dynamics of the coordinate distributions for the polarization ellipticity (PE) images of polycrystalline films of liquor (PFL). Coordinate distributions of polarization ellipticity (PE) image values were estimated for each sample of PFL in the optical arrangement of the Stokes polarimeter using the method of two-dimensional distributions of Stokes-parameters.

RESULTS: The most sensitive statistics to the post-mortem manifestations in terms of changes to liquor polycrystalline optical networks were those for the 3rd and 4th order. They characterized asymmetry and kurtosis (peak sharpness) of coordinate distributions for polarization ellipticity images of polycrystalline films of liquor. The optimal interval was 32 hours, with accuracy of 60 min, from the method of two-dimensional Stokes-polarimetric mapping used.

References

Aksjonova, V. M., & Starkova, A. V. (1998). Diagnosticheskaja cennost' opredelenija urovnja veshhestv srednej molekuljarnoj massy v plazme novorozhdjonnyh detej, perenjosshih vnutriutrobnuju gipoksiju. Perm. med. zhurnal, 15(1), 25-28.

Arroyo, A., Rosel, P., & Marron, T. (2005). Cerebrospinal fluid: postmortem biochemical study. Journal of clinical forensic medicine, 12(3), 153-156. DOI: 10.1016/j.jflm.2015.09.017

Chen, J. H., Inamori-Kawamoto, O., Michiue, T., Ikeda, S., Ishikawa, T., & Maeda, H. (2015) Cardiac biomarkers in blood, and pericardial and cerebrospinal fluids of forensic autopsy cases: A reassessment with special regard to postmortem interval. Legal Medicine (Tokyo). 2015 Sep; 17(5): 343-50. DOI: 10.1016/j.legalmed.2015.03.007. Epub 2015 Apr 30.

Dehn, R. W., & Asprey, D. P. (2013). Essential Clinical Procedures: Expert Consult-Online and Print. Elsevier Health Sciences. P. 146-156.

Ermakov, A. V. (2004). Izmenenie urovnja srednemolekuljarnyh soedinenij v likvore v zavisimosti ot vremeni nastuplenija smerti. Problemy jekspertizy v medicine, 4(16-4).

Finehout, E. J., Franck, Z., Relkin, N., & Lee, K. H. (2006). Proteomic analysis of cerebrospinal fluid changes related to postmortem interval. Clinical Chemistry, Oct; 52(10):1906-13. Epub 2006 Aug 3.

Girela, E., Villanueva, E., Irigoyen, P., Girela, V., Hernández‐Cueto, C., & Peinado, J. M. (2008). Free amino acid concentrations in vitreous humor and cerebrospinal fluid in relation to the cause of death and postmortem interval. Journal of forensic sciences, 2008 May; 53(3):730-3. DOI: 10.1111/j.1556-4029.2008.00726.x.

Parmar, A. K., & Menon, S. K. (2015). Estimation of postmortem interval through albumin in CSF by simple dye binding method. Sci Justice, 55(6), 388-393. DOI: 10.1016/j.scijus.2015.07.005

Prieto-Bonete, G., Perez-Carceles, M. D., & Luna, A. (2015). Morphological and histological changes in eye lens: Possible application for estimating postmortem interval. Leg Med (Tokyo), 17(6), 437-442. DOI: 10.1016/j.legalmed.2015.09.002

Ushenko, O. G., Dubolazov, O. V., Ushenko, V. O., Gorsky, M. P., Soltys, I. V., & Olar, O. V. (2015a, November). Fourier polarimetry of the birefringence distribution of myocardium tissue. In 12th International Conference on Correlation Optics (November 30, 2015, pp. 980915-980915). DOI:10.1117/12.2228980.

Ushenko, O. G., Dubolazov, O. V., Ushenko, Y. O., & Gorsky, M. P. (2015b, November). Scale-selective analysis of myocardium polarization images in problems of diagnostic of necrotic changes. In 12th International Conference on Correlation Optics (pp. 98091C-98091C). International Society for Optics and Photonics. DOI:10.1117/12.2228998

Ushenko, V. O., Olar, O. V., Ushenko, Y. O., Gorsky, M. P., & Soltys, I. V. (2015, November). Polarization correlometry of polycrystalline films of human liquids in problems of forensic medicine. In 12th International Conference on Correlation Optics (pp. 98091B-98091B). International Society for Optics and Photonics. DOI:10.1117/12.2228997

Wanchuliak, O. Y., Ushenko, O. H., & Bezhenar, I. L. (2004) Application of polarization method for analyzing damage of biological tissues Bucovinian Medical Herald, 8(3-4), 300-301.

Published
2016-09-18