• Zhadyra Sagykyzy Shagyrova National Center for Biotechnology
  • Yerzhan Yersaiynuly Zhienbay Nazarbayev University Research and Innovation System (NURIS), Nazarbayev University
  • Mikhail Seregeyevich Voikov Nazarbayev University Research and Innovation System (NURIS), Nazarbayev University
  • Alexander Vyacheslavovich Shustov National Center for Biotechnology
Keywords: virus-like particles, drug carrier, targeting, conjugate, transportan, Doxorubicin


Abstract: Nano-sized carriers can help to reduce toxicity and improve clinical efficacy of drugs. Virus-like particles (VLPs) are biocompatible and biodegradable self-assembling nanoparticles, which show great promise as carriers for substances for targeted delivery and controlled release. Either chemical conjugation of physical incorporation without formation of covalent bonds is possible to load substances of interest into VLPs.

Objectives: To produce VLPs from recombinant viral capsid protein (HBcAg) and test feasibility of methods of formation of chemical and physical conjugates of VLPs with substances of pharmacological interest.

Methods: Virus-like particles composed from recombinant hepatitis B core antigen (HBcAg) were produced by recombinant expression in E.coli and purified by successive centrifugation through sucrose gradients. Peptide transportan 10 was synthesized and used for carbodiimide (EDC)-mediated conjugation to VLPs. Doxorubicin (DOX) was loaded into the nucleic acid-containing VLPs to form physical conjugate.

Results: VLPs with chemically attached moieties of cell-penetrating peptide transportan 10 were produced. The conjugate was examined in SDS-PAGE to confirm presence of conjugation products. Conjugation efficiency (molar ration peptide/protein in the conjugate) reaches 0.5:1 (i.e. 50% of protein chains have one attached peptide moiety). The nucleic acid-containing VLPs can be loaded with the DOX forming stable non-covalent physical conjugate.

Conclusion: Recombinantly expressed VLPs allow easy attaching of small molecules making them a convenient platform to develop drug carriers.

Author Biographies

Zhadyra Sagykyzy Shagyrova, National Center for Biotechnology
staff researcher
Yerzhan Yersaiynuly Zhienbay, Nazarbayev University Research and Innovation System (NURIS), Nazarbayev University
research engineer
Mikhail Seregeyevich Voikov, Nazarbayev University Research and Innovation System (NURIS), Nazarbayev University
staff researcher
Alexander Vyacheslavovich Shustov, National Center for Biotechnology
head of laboratory


Bally, M. B., Nayar, R., Masin, D., Cullis, P. R., & Mayer, L. D. (1990). Studies on the myelosuppressive activity of doxorubicin entrapped in liposomes. Cancer Chemotherapy and Pharmacology, 27, 13-19, doi: 10.1007/BF00689270

Cai, B., Lin, Y., Xue, X. H., Fang, L., Wang, N., & Wu, Z. Y. (2011). TAT-mediated delivery of neuroglobin protects against focal cerebral ischemia in mice. Experimental Neurology, 227, 224-31. doi: 10.1016/j.expneurol.2010.11.009

Fonseca, S. B., Pereira, M. P., & Kelley, S. O. (2009). Recent advances in the use of cell-penetrating peptides for medical and biological applications. Advanced Drug Delivery Reviews, 61, 953-64. doi: 10.1016/j.addr.2009.06.001

Gabathuler, R. (2010). Development of new peptide vectors for the transport of therapeutic across the blood-brain barrier. Therapeutic Delivery, 1, 571-586. doi:10.4155/tde.10.35

Gallo, G. (2003). Making proteins into drugs: assisted delivery of proteins and peptides into living neurons. Methods in Cell Biology, 71, 325-338. doi: 10.1016/S0091-679X(03)01015-X

Heitz, F., Morris, M. C., & Divita, G. (2009). Twenty years of cell-penetrating peptides: from molecular mechanisms to therapeutics. British Journal of Pharmacology, 157, 195-206. doi:10.1111/j.1476-5381.2008.00057.x

Hwang do, W., Son, S., Jang, J., Youn, H., Lee, S., Lee, D., Lee, Y. S., Jeong, J. M., Kim, W. J., & Lee, D. S. (2011). A brain-targeted rabies virus glycoprotein-disulfide linked PEI nanocarrier for delivery of neurogenic microRNA. Biomaterials, 32, 4968-75. doi: 10.1016/j.biomaterials.2011.03.047

Kaplan, L. D., Du Mond, C., Mamelok, R. D., & Henry, D. H. (1998). Pegylated-liposomal doxorubicin versus doxorubicin, bleomycin, and vincristine in the treatment of AIDS-related Kaposi's sarcoma: results of a randomized phase III clinical trial. Journal of Clinical Oncology, 16, 2445-2451.

Kopecek, J., Rejmanova, P., Duncan, R., & Lloyd, J. B. (1985). Controlled release of drug model from N-[2-hydroxy-propyl] methacrylamide copolymers. Annals of the New York Academy of Sciences, 446, 93-104. doi: 10.1111/j.1749-6632.1985.tb18393.x

Kumar, P., Wu, H., McBride, J. L., Jung, K. E., Kim, M. H., Davidson, B. L., Lee, S. K., Shankar, P., & Manjunath, N. (2007). Transvascular delivery of small interfering RNA to the central nrvous system. Nature, 448, 39-43. doi:10.1038/nature05901

Levi-Schaffer, F., Bernstein, A., Meshorer, A., & Arnon, R. (1982). Reduced toxicity of daunorubicin by conjugation to dextran. Cancer Treatment Reports, 66, 107-114

Lohmann, A. E., Speers, C. H., & Chia, S. K. (2013). Evaluation of the clinical benefits of nanoparticle albumin-bound paclitaxel in women with metastatic breast cancer in British Columbia. Current Oncology, 20, 97-103. doi: 10.3747/co.20.1256.

Maeda, H. (2010). Tumor-selective delivery of macromolecular drugs via the EPR effect: background and future prospects. Bioconjugate Chemistry, 21, 797-802. doi: 10.1021/bc100070g

Northfelt, D. W., Dezube, B. J., Thommes, J. A., Miller, B. J., Fischl, M. A., Friedman-Kien, A., Plummer, E. M., & Manchester, M. (2011). Viral nanoparticles and virus-like particles: platforms for contemporary vaccine design. Wiley Interdisciplinary Reviews. Nanomedicine and Nanobiotechnology, 3, 174-196. doi: 10.1002/wnan.119

Qin, Y., Chen, H., Yuan, W., Kuai, R., Zhang, Q., Xie, F., Zhang, L., Zhang, Z., Liu, J., & He, Q. (2011). Liposome formulated with TAT-modified cholesterol for enhancing the brain delivery. International Journal of Pharmacy, 419, 85-95. doi: 10.1016/j.ijpharm.2011.07.021

Rahman, A., Joher, A., & Neefe, J. R. (1986) Immunotoxicity of multiple dosing regimens of free doxorubicin and doxorubicin entrapped in cardiolipin liposomes. British Journal of Cancer, 54, 401-408. doi:10.1038/bjc.1986.190

Whitacre, D. C., Lee, B. O., & Milich, D. R. (2009). Use of hepadnavirus core proteins as vaccine platforms. Expert Review of Vaccines, 8, 1565-1573. doi: 10.1586/erv.09.121

Xia, H., Gao, X., Gu, G., Liu, Z., Hu, Q., Tu, Y., Song, Q., Yao, L., Pang, Z., Jiang, X., Chen, J. & Chen, H. (2012). Penetratin-functionalized PEG-PLA nanoparticles for brain drug delivery. Int J Pharm., 436, 840-50. doi: 10.1016/j.ijpharm.2012.07.029

Zunino, F., Pratesi, G., & Pezzoni, G. (1987). Increased therapeutic efficacy and reduced toxicity of doxorubicin linked to pyran copolymer via the side chain of the drug. Cancer Treatment Reports, 71, 367-373