• Zharilkassin Iskakov Almaty University of Energy and Communication


Steady-state oscillations of two-bearing console rotor with mass imbalance and disc misalignment are subject to study. External damping forces can be included into any motion equations. This enables us to generate amplitude-frequency and phase-frequency responses, and to describe rotor behavior at critical speeds. The combined mass imbalance and disc misalignment effect on rotor dynamics can be observed over the entire shaft speed range. Detection of residual phase shift angles at low speeds is practically relevant. This is extremely important for rotor balancing as low-speed measuring findings are used to evaluate mass eccentricity lines. To determine an unknown orientation of disc misalignment line, you can use phase shift angle values at high rotation speeds. The residual phase shift angles are studied depending on combined imbalance and shaft console value. Motion equations and all calculation formulas are given in a compact and dimensionless form.


Artyunik, A. I. (1992). Avtomaticheskaja balansirovka rotorov pri pomoshi mayatnikovych podvesov [Automatic rotor balancing with pendulum suspensions. Deposit research papers]. Ulan-Ude, Russia: East Siberian Institute of Technology.

Artyunik, A. I. (1992). Issledovanije vlijanija momentov soprotivlenija v oporah mayatnikov avtobalansira na dinamiku rotora [Study of resistance moments in the self-balancing device pendulum rearings on the rotor dynamics. Deposit research papers]. Ulan-Ude, Russia: East Siberian Institute of Technology.

Benson, R. S. (1983). Steady-state oscillations of console rotor with misalignment and disc imbalance. Design Engineering and Mechanical Engineering, 105 (4), 35-40.

Dimentberg, F. M. (1959). Izgibnyje kolebanija vrashayushihsya valov [Bending oscillations of rotary shafts]. Moscow, Russia: Printing House AN USSR.

Gordeyev, B. A. & Maslov, G. A. (2008). Opredelenije disbalansa rotora akusticheskimi metodami [Identification of rotor imbalance with acoustic method]. In Balandin, D. B. & Yerofeyev, V. I. (2008). Nelineynzye kolebaniya mechanicheskih sistem [Nonlinear Oscillations of Mechanical Systems]. Paper presented at the Proceedings of the 8th Russian National Conference (pp. 90–95). Nizhny Novgorod, Russia: Dialog Cultur.

Grobov, V.A. (1961). Asimptotiecheskie metody rasheta izgibnyh kolebanij valov turbomashin [Asymptotical calculation methods of rotodynamic machine shaft bending oscillations]. Moscow, Russia: Printing House AN USSR.

Hendricks, S. Z. & Klauber, R. D. (1984). Optimal control of rotor partially filled with an in viscid in compressible Fluid. ASME Journal of applied mechanics, 51, 863-868.

Lingener, A. (1991). Auswuchttechnik für store Rotoren [Balance technology for rotors]. Maschinenbautechnik, 40 (1), 21-24.

Surin, V. M. (2008). Prikladnaya mechanika, uchebnoje posobie [Applied mechanics, tutorial]. Minsk, Byelorussia: Novoye Znaniye. PMCid:PMC2518806

Tolubayeva, K. K. (2007). Optimizaciya parametrov i unpravlejniya dvizheniem giroskopicheskoi rotornoi sistemy s uchetom dinamicheskoi harakteristiki dvigatelya [Optimization of parameters and gyroscopic rotor system motion control in view of motor response]. (Doctoral dissertation). Almaty, Kazakhstan: Mechanics and Engineering Institute.

Yablonskiy, A. A. (2007). Kurs teorii kolebanii, uchebnoe posobie [Oscillation theory course, tutorial]. St. Petersburg, Russia: BHV.