THE IMPACT OF THE ENZYME STEROID 5α-REDUCTASE 2 DEFICIENCY ON UROGENITAL BIRTH DEFECT IN MALES
Abstract
This research work on 5α-reductase 2 is aiming to put into evidence how a mutation of the gene codifying for this enzyme can affect the phenotype of different males, leading at a partial female phenotype. This type of research focuses on offering a scientific explanation on different health problems affecting the normal lives of some people, even from early stages of their evolution.
The experiment is focused on studying the impact of an enzyme called “steroid 5α-reductase” on the development of male urogenital components during the embryological life. In order to study the steroid 5α-reductase 2 activity, the following procedures were used: isolation of a 5α-reductase 2 gene, genomicDNAisolation, and polymerase chain reactions.
Biochemical analysis put into evidence two mutations representing opposite poles of disease manifestation, i.e. feminization of external genitalia versus predominantly male development. It suggested a correlation between clinical expression and severity of the impairment of enzyme function. As mentioned by Imperato-McGinley, Guerrero, Gautier, & Peterson (1974), one of the mutations is called “G196S mutation.” This mutation consists of a serine substitution for a glycine at position 196. In this case, the level of 5α-reductase activity was sufficient to induce partial virilization. The second type of mutation is called “G34R mutation.” This mutation consists of an arginine substitution for glycine at position 34. The G34R enzyme is essentially inactive, thus giving rise to the female phenotype.
Mutations in the type 2 gene are responsible for autosomal recessive genetic disease of 5α-reductase deficiency.
References
Anderson, S. D., Berman, D. M., Jenkins, E. P., & Russell, D. W. (1991). Deletion of Steroid 5α-reductase 2 Gene in a Male Pseudohermaphroditism. Nature, 354, 159-161. doi:10.1038/354159a0
Carpenter, T. O., Imperato-McGinley, J., Boulware, S. D., Weiss, R. M., Shackleton, C., Griffin, J. E., & Wilson, J. D. (1990). Variable Expression of 5α-Reductase Deficiency Presentation with Male Phenotype in a Child of Greek Origin. Journal of Clinical Endocrinology & Metabolism, 71(2), 318-322. doi:10.1210/jcem-71-2-318
Imperato-McGinley, J., Guerrero, L., Gautier, T., & Peterson, R. E. (1974). Steroid 5α-reductase Deficiency in Man: An Inherited Form of Male Pseudohermaphroditism. Science, 186(4170), 1213-1215. doi:10.1126/science.186.4170.1213
Jenkins, E. P., Anderson, S., Imperato-McGinley, J., Wilson, J. D., & Russel, D. W. (1992). Genetic and Pharmacological Evidence for More Than One Human Steroid 5α-reductase. Journal of Clinical Investment, 89(1), 293-300. doi:10.1172/JCI115574
Jenkins, E. P., Hsieh, C. L., Milatovich, A., Normington, K., & Berman, D. M. (1991). Characterization and Chromosomal Mapping of a Human Steroid 5α-reductase Gene and Pseudogene and Mapping of the Mouse Homologue. Genomic, 11(4), 1102-1112. doi:10.1016/0888-7543(91)90038-G
Johnson, L., George, F., Neaves, W., Rosenthal, I., Christensen, R., Decristoforo, A., Schweikert, H. U., Sauer, M., Leshin, M., Griffin, J., & Wilson, J. (1986). Characterization of the Testicular Abnormality in a 5α-reductase Deficiency. Journal of Clinical Endocrinology & Metabolism, 63(5), 1091-1099. doi:10.1210/jcem-63-5-1091
Labrie, F., Sugimoto, Y., Luu-The, V., Simard, J., & Lachance, Y. (1992). Structure of Human Type II 5 Alpha-Reductase Gene. Endocrinology, 131(3), 1571-1573. doi:10.1210/endo.131.3.1505484
Marumudi, E., Pascal, Ph., & Bindu, K., (2008). Molecular diagnosis of 5α-reductase-2 gene mutation in two Indian families with male pseudohermaphroditism. Asian Journal of Andrology, 10(5), 815–818. doi: 10.1111/j.1745-7262.2008.00350.x
Russell, D. W., & Wilson, J. D. (1994). Steroid 5alpha-Reductase: Two Genes/Two Enzymes. Annual Review of Biochemistry, 63, 25-61. doi: 10.1146/annurev.bi.63.070194.000325
Saiki, R. K., Gelfand, D. H., Stoffel, S., Scharf, S. J., Higuchi, R., Horn, G. T., Mullis, K. B., & Erlich, H. A.. (1988). Primer-Directed Enzymatic Amplification of DNA with a Thermostable DNA Polymerase. Science, 239(4839), 487-491. doi:10.1126/science.2448875
Shuang-Yong, X. (1986). A Rapid Method for Preparing Phage λ DNA from Agar Plate Lysates. Gene Analysis Techniques, 3(5), 90-91. doi:10.1016/0735-0651(86)90009-9
Sinclair, A. H., Berta, P., Palmer, M., Hawkins, J. R., Griffiths, B., Smith, M., Foster, J., Frischauf, A. M., Lovell-Badge, R., & Goodfellow, P. (1990). A Gene from the Human Sex-Determining Region Encodes a Protein with Homology to a Conserved DNA-Binding Motif. Nature, 346, 240 – 244. doi:10.1038/346240a0
Thigpen, A. E., Davis, D. L., Milatovich, A., Mendonca, B. B., Imperato-McGinley, J., Francke, U., Wilson, J. D., & Russel, D. W. (1992). Molecular genetics of steroid 5 alpha-reductase 2 deficiency. Journal of Clinical Investment, 90(3), 799-809. doi:10.1172/JCI115954
Wigley, W. C., Prihoda, J., Mowszowicz, I., Mendonca, B., New, M., Wilson, J. D., & Russel, D. (1994). Natural Mutagenesis Study of the Human Steroid 5α-reductase 2 Isoenzyme. Biochemistry, 33(5), 1265–1270. doi:10.1021/bi00171a029
Wilson, J. D. (1978). Sexual Differentiation. Annual Review of Physiology, 40, 279-306. doi:10.1146/annurev.ph.40.030178.001431
Wilson, J. D., Griffin, J. E., & Russel, D. W. (1993). Steroid 5α-reductase 2 Deficiency. Endocrine Reviews, 14(5), 577-593. doi: 10.1210/edrv-14-5-577
Copyright information
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (Creative Commons Attribution License 3.0 - CC BY 3.0) that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
info@iseic.cz, www.iseic.cz, ojs.journals.cz