• Livia-Irina Olaru Sanitary Post High School “Fundeni,” Bucharest, Romania
Keywords: conversion of testosterone, dihydrotestosterone, virilization, mammals, G196S mutation, G34R mutation, steroid 5α-reductase


This research work on 5α-reductase 2 is aiming to put into evidence how a mutation of the gene codifying for this enzyme can affect the phenotype of different males, leading at a partial female phenotype.  This type of research focuses on offering a scientific explanation on different health problems affecting the normal lives of some people, even from early stages of their evolution.

The experiment is focused on studying the impact of an enzyme called “steroid 5α-reductase” on the development of male urogenital components during the embryological life.  In order to study the steroid 5α-reductase 2 activity, the following procedures were used: isolation of a 5α-reductase 2 gene, genomicDNAisolation, and polymerase chain reactions.

Biochemical analysis put into evidence two mutations representing opposite poles of disease manifestation, i.e. feminization of external genitalia versus predominantly male development. It suggested a correlation between clinical expression and severity of the impairment of enzyme function.  As mentioned by Imperato-McGinley, Guerrero, Gautier, & Peterson (1974), one of the mutations is called “G196S mutation.”  This mutation consists of a serine substitution for a glycine at position 196.  In this case, the level of 5α-reductase activity was sufficient to induce partial virilization.  The second type of mutation is called “G34R mutation.”  This mutation consists of an arginine substitution for glycine at position 34.  The G34R enzyme is essentially inactive, thus giving rise to the female phenotype.

Mutations in the type 2 gene are responsible for autosomal recessive genetic disease of 5α-reductase deficiency.


Anderson, S. D., Berman, D. M., Jenkins, E. P., & Russell, D. W. (1991). Deletion of Steroid 5α-reductase 2 Gene in a Male Pseudohermaphroditism. Nature, 354, 159-161. doi:10.1038/354159a0

Carpenter, T. O., Imperato-McGinley, J., Boulware, S. D., Weiss, R. M., Shackleton, C., Griffin, J. E., & Wilson, J. D. (1990). Variable Expression of 5α-Reductase Deficiency Presentation with Male Phenotype in a Child of Greek Origin. Journal of Clinical Endocrinology & Metabolism, 71(2), 318-322. doi:10.1210/jcem-71-2-318

Imperato-McGinley, J., Guerrero, L., Gautier, T., & Peterson, R. E. (1974). Steroid 5α-reductase Deficiency in Man: An Inherited Form of Male Pseudohermaphroditism. Science, 186(4170), 1213-1215. doi:10.1126/science.186.4170.1213

Jenkins, E. P., Anderson, S., Imperato-McGinley, J., Wilson, J. D., & Russel, D. W. (1992). Genetic and Pharmacological Evidence for More Than One Human Steroid 5α-reductase. Journal of Clinical Investment, 89(1), 293-300. doi:10.1172/JCI115574

Jenkins, E. P., Hsieh, C. L., Milatovich, A., Normington, K., & Berman, D. M. (1991). Characterization and Chromosomal Mapping of a Human Steroid 5α-reductase Gene and Pseudogene and Mapping of the Mouse Homologue. Genomic, 11(4), 1102-1112. doi:10.1016/0888-7543(91)90038-G

Johnson, L., George, F., Neaves, W., Rosenthal, I., Christensen, R., Decristoforo, A., Schweikert, H. U., Sauer, M., Leshin, M., Griffin, J., & Wilson, J. (1986). Characterization of the Testicular Abnormality in a 5α-reductase Deficiency. Journal of Clinical Endocrinology & Metabolism, 63(5), 1091-1099. doi:10.1210/jcem-63-5-1091

Labrie, F., Sugimoto, Y., Luu-The, V., Simard, J., & Lachance, Y. (1992). Structure of Human Type II 5 Alpha-Reductase Gene. Endocrinology, 131(3), 1571-1573. doi:10.1210/endo.131.3.1505484

Marumudi, E., Pascal, Ph., & Bindu, K., (2008). Molecular diagnosis of 5α-reductase-2 gene mutation in two Indian families with male pseudohermaphroditism. Asian Journal of Andrology, 10(5), 815–818. doi: 10.1111/j.1745-7262.2008.00350.x

Russell, D. W., & Wilson, J. D. (1994). Steroid 5alpha-Reductase: Two Genes/Two Enzymes. Annual Review of Biochemistry, 63, 25-61. doi: 10.1146/

Saiki, R. K., Gelfand, D. H., Stoffel, S., Scharf, S. J., Higuchi, R., Horn, G. T., Mullis, K. B., & Erlich, H. A.. (1988). Primer-Directed Enzymatic Amplification of DNA with a Thermostable DNA Polymerase. Science, 239(4839), 487-491. doi:10.1126/science.2448875

Shuang-Yong, X. (1986). A Rapid Method for Preparing Phage λ DNA from Agar Plate Lysates. Gene Analysis Techniques, 3(5), 90-91. doi:10.1016/0735-0651(86)90009-9

Sinclair, A. H., Berta, P., Palmer, M., Hawkins, J. R., Griffiths, B., Smith, M., Foster, J., Frischauf, A. M., Lovell-Badge, R., & Goodfellow, P. (1990). A Gene from the Human Sex-Determining Region Encodes a Protein with Homology to a Conserved DNA-Binding Motif. Nature, 346, 240 – 244. doi:10.1038/346240a0

Thigpen, A. E., Davis, D. L., Milatovich, A., Mendonca, B. B., Imperato-McGinley, J., Francke, U., Wilson, J. D., & Russel, D. W. (1992). Molecular genetics of steroid 5 alpha-reductase 2 deficiency. Journal of Clinical Investment, 90(3), 799-809. doi:10.1172/JCI115954

Wigley, W. C., Prihoda, J., Mowszowicz, I., Mendonca, B., New, M., Wilson, J. D., & Russel, D. (1994). Natural Mutagenesis Study of the Human Steroid 5α-reductase 2 Isoenzyme. Biochemistry, 33(5), 1265–1270. doi:10.1021/bi00171a029

Wilson, J. D. (1978). Sexual Differentiation. Annual Review of Physiology, 40, 279-306. doi:10.1146/

Wilson, J. D., Griffin, J. E., & Russel, D. W. (1993). Steroid 5α-reductase 2 Deficiency. Endocrine Reviews, 14(5), 577-593. doi: 10.1210/edrv-14-5-577