SIMULATION OF NON-LINEAR CHARACTERISTICS INFLUENCE DYNAMIC ON VERTICAL RIGID GYRO ROTOR RESONANT OSCILLATIONS

  • Zharilkassin Iskakov Almaty University of Power Energy and Communications, Institute of Mechanics and Machine Science
Keywords: gyro rotor, resonant amplitude, linear damping, non-linear damping, mathematical simulation

Abstract

The influence of viscous linear and cubic nonlinear damping of an elastic support on the resonance oscillations of a vertical rigid gyroscopic unbalanced rotor is investigated. Simulation results show that linear and cubic non-linear damping can significantly dampen the main harmonic resonant peak. In non-resonant areas where the speed is higher than the critical speed, the cubic non-linear damping can slightly dampen rotor vibration amplitude in contrast to linear damping. If linear or cubic non-linear damping increase in resonant area significantly kills capacity for absolute motion, then they have little or no influence on the capacity for absolute motion in non-resonant areas. The simulation results can be successfully used to create passive vibration isolators used in rotor machines vibration damping, including gyroscopic ones.

References

Fujiwara, H., Nakaura, H., & Watanabei K. (2015). The vibration behavior of flexibly fixed rotating machines, Proceedings of the 14th IFToMM World Congress. Taipei, Taiwan.

Gil-Negrete, N., Vinolas, J., & Kari L. (2009). A non-linear rubber material model combining fractional order viscoelasticity and amplitude dependent effects, Journal of Applied Mechanics, 76(1), 9 -11.

Hayashi, C. (1964). Non-linear Oscillations in Physical Systems (Chapters 1, 3 – 6). McGraw – Hill.

Ho, C., Lang Z., & Billings, S. A. (2012). The benefits of non-linear cubic viscous damping on the force transmissibility of a Duffing-type vibration isolator. Proceedings of UKACC International Conference on Control, 479-484. Cardiff, UK.

Iskakov Zh. & Kalybayeva A. (2010, September 14). Kolebaniya i ustoychivost' vertikal'nogo giroskopicheskogo rotora s perekosom diska i disbalansom massy [Oscillations and stability of vertical gyro rotor with disk tilt and mass disbalance]. Trudy I Mezhdunarodnogo simposiuma: “Fundamental’nue i prikladnye problemy” [Proc. of International Symposium “Fundamental and Applied Science Problems”] Moscow pp. 50 – 57. RAS.

Iskakov Zh. & Kunelbayev M. (2018). Centrifuga na baze gyroskopicheskogo rotora [Centrifuge based on gyro rotor]. Invention patent of the Republic of Kazakhstan (19) KZ B (11) 32666 19.02.2018, bulletin № 7.

Iskakov, Zh. (2015, October 25). Resonant Oscillations of a Vertical Unbalanced Gyroscopic Rotor with Non-linear. Characteristics. Proceedings of the 14th IFToMM World Congress. Taipei, Taiwan. DOI Number: 10.6567/IFToMM.14TH.WC.OS14.001.

Iskakov, Zh. (2017a). Dynamics of a Vertical Unbalanced Gyroscopic Rotor with Non-linear Characteristics. New advances in Mechanisms, Mechanical Transmissions and Robotics, Mechanisms and Machine Science, 46, 107–114. Springer International Publishing AG. DOI 10.1007/978-319-45450-4_11.

Iskakov, Zh. (2017b, September 11). Rezonansnyye kolebaniya neuravnoveshennogo vertikal'nogo giroskopicheskogo rotora s nelineynymi kharakteristikami [Resonant oscillations of non-balanced vertical gyro rotor with non-linear characteristics]. Proceedings of the International Symposium of Mechanism and Machine, 240-246. Science, Baku.

Kyderbekuly A.B. (2006). Kolebaniya i ustoychivost' rotornykh sistem i ploskikh mekhanizmov s nelineyno- uprugimi kharakteristikami [Oscillations and stability of rotor systems and plane mechanisms with non-linear rigid characteristics] (Doctor of Engineering Science Dissertation.:01.02.06). Almaty.

Panovko Ya. G. (1971). Vvedeniye v teoriyu mekhanicheskikh kolebaniy [Introduction to mechanical oscillations theory]. Moscow, Nauka.

Peng, Z. K., Mengand Lang, Z. Q., Zhang, W. M., & Chu, F. L. (2012). Study of the effects of cubic non-linear damping on vibration isolations using Harmonic Balance Method. International Journal of Non-Linear Mechanics, 47(10), 1065-1166.

Ravindra, B., & Mallik, A. K. (1994). Performance of non-linear vibration isolators under harmonic excitation. Journal of Sound and Vibration, 170, 325-337.

Richards, C. M., & Singh, R. (1999). Experimental characterization of non-linear rubber isolators in a multi-degree-of-freedom system configuration. The journal of the Acoustical Society of America, 106. 21 - 78.

Szemplinska-Stupnicka, W. (1968). Higher harmonic oscillations in heteronymous non-linear systems with one degree of freedom. International Journal of Non-Linear Mechanics, 3(1), 17-30.

Yablonskiy A.A. (2007). Kurs teorii kolebaniy [Oscillation theory course]. Study guide. BHV - St. Petersburg.

Published
2018-09-25