RESTORATION OF A DEGRADED BOG HYDROLOGICAL REGIME USING SYSTEM DYNAMICS MODELING

  • Oskars Java Faculty of Engineering, Vidzeme University of Applied Sciences
Keywords: system dynamics, bog restoration, modeling, STELLA®

Abstract

In scope of biodiversity and sustainable ecosystem development the restoration of the bog ecosystem is important, because by reducing the drainage effect on the bog, the negative impact on adjacent intact or relatively intact raised bogs and other wetland hydrological regimes is lowered. To restore a degraded bog hydrological regime, it is necessary to fill up the drainage ditches and cut out part of the forest stand. While researching scientific literature the author has obtained no evidence that there is a system dynamics model developed in order to simulate the tree cutting intensity in a degraded bog after filling up the drainage ditches with the aim to speed up the restoration of hydrological regimes, thus this approach is an innovative way of restoring the hydrological regime of degraded bogs. In previous studies the author concluded that the STELLA® system dynamics model is an appropriate tool to model the hydrological regime of bog. As a result of this research there is a STELLA® system dynamics model developed which through mathematical relationships helps to better understand the bog water cycle and to determine the consequences of any intervention on the bog ecosystem, primarily the effect of tree cutting. While running this STELLA® system dynamics model by changing the leaf area index, changes in the peat layer moisture level can be observed, which allows to predict the tree cutting intensity in order to reach the desired peat layer moisture level. By changing input data, this STELLA® system dynamics model could be used in other restoration projects of degraded raised bogs.

References

Ampt, C. A., & Green, W. H. (1911). Studies on Soil Physics, Part 1, the Flow of Air and Water through Soils. The Joirnal of Agricultural Scince, 4(1), 1-24. doi:10.1017/S0021859600001441

Anderson, E. A. (1976). A point energy and mass balance model of a snow cover. NOAA technical report NWS, 19, 138-144.

Andreadis, K. M., Lettenmaier, D. P., & Storck, P. (2009). Modeling snow accumulation and ablation process in the forest environments. Water resources research, 45, 1-13. doi:10.1029/2008WR007042

Aston, A. R. (1979). Rainfall Interception by Eight Small Trees. Journal of Hydrology, 42(3), 383-396. doi:10.1016/0022-1694(79)90057-X

Barbour, L., Elshorbagy, A., Julta, A., & Kells, J. (2005). System dynamics approach to assess the sustainability of reclamation of disturbed watersheds. Canadian Journal of Civil Engineering, 32, 144-158. doi:10.1139/L04-112

Brown, L., Chen, L. M., Cihlar, J., Hall, R. J., King, D. J., Leblanc, S., . . . Van der Sanden, J. (2002). Derivation and validation of Canada-wide coarse-resolution leaf area index maps using high-resolution satellite imagery and ground measurements. Remote Sensing of Environment, 80(1), 165-184. doi:10.1016/S0034-4257(01)00300-5

Bulcock, H. H., & Hewitt, G. P. (2010). Spatial mapping of leaf area index using hyperspectral remote sensing for hydrological applications with a particular focus on canopy interception. Hydrology and Earth System Sciences, 14, 383-392. doi:10.5194/hess-14-383-2010

Butts, M. B., & Graham, D. N. (2005). Flexible, integrated watershed modelling with MIKE SHE. Watershed Models, 245-272. doi:10.1201/9781420037432.ch10

Campbell, G. S., & Norman, J. M. (1989). Canopy structure. Plant Physiological Ecology, 301-325. doi:10.1007/978-94-009-2221-1_14

Carey, S., Elshorbagy, A., & Kesha, N. (2009). A generic system dynamics model for simulating and evaluating the hydrological performance of reconstructed watersheds. Hydrology and Earth System Sciences, 13, 865-881. doi:10.5194/hess-13-865-2009

Cui, Y., & Jia, L. (2014). A Modified Gash Model for Estimating Rainfall Interception Loss of Forest Using Remote Sensing Observations at Regional Scale. Water, 6, 993-1012. doi:10.3390/w6040993

Elshorbagy, A., Julta, A., & Kells, J. (2007). Simulation of the hydrological process on reconstructed watersheds using system dynamics. Hydrological Sciences Journal, 52, 538-562. doi:10.1623/hysj.52.3.538

Essery, R. L., Gray, D. M., Hedstrom, N., Pietroniro, A., Pomeroy, J. W., Shook, K. R., & Toth, B. (1998). An evaluation of snow accumulation and ablation process for land surface modeling. Hydrological Process, 12, 2339-2367. doi:10.1002/(SICI)1099-1085(199812)12:15<2339::AID-HYP800>3.0.CO;2-L

Feng, S., Kang, S., Liu, X., Ma, Y., Song, X., Su, D., & Zhan, H. (2011). Water Infiltration in Layered Soils with Air Entrapet: Modified Green-Ampt Model and Experimental Validation. Journal of Hydrologic Engineering, 16(8), 628-638. doi:10.1061/(ASCE)HE.1943-5584.0000360

Froehlich, D. C., & Jobson, H. E. (1988). Basic hydraulic principles of open-channel flow. Reston: U.S. Geological Survey.

Gelfan, A. N., Kuchment, L. S., & Pomeroy, J. W. (2004). Modeling Forest Cover Influences on Snow Accumulation, Sublimation, and Melt. American Meteorological Society, 5, 785-803. doi:https://doi.org/10.1175/1525-7541(2004)005<0785:MFCIOS>2.0.CO;2

Hedstrom, N., & Pomeroy, J. W. (1998). Intercepted snow in the boreal forest: measurement and modelling. Hyrological Processes, 12, 1611-1625. doi:10.1002/(SICI)1099-1085(199808/09)12:10/11<1611::AID-HYP684>3.0.CO;2-4

Klamerus-Iwan, A. (2014). Different views on tree interception processes and its determinants. Forest Research Papers, 75(3), 291-300. doi:10.2478/frp-2014-0028

Kuzmin, P. P. (1961). Protsess tayaniya snezhnogo pokrova [The process of snowmelt]. Gidrometeoizdat, 346.

Li, L., & Simonovic, S. P. (2002). System dynamics model for predictiong floods from snowmelt in Northen America praire watersheds. Hydrological Processes, 16, 2645-2666. doi:10.1001/hyp/1064

Manning, R. (1891). On the flow of water in open channels and pipes. Transactions of the Institution of Civil Engineers of Ireland, 20, 161-207. doi:10.1680/imotp.1891.20563

Minďáš, J., Škvarenina, J., & Střelcová, K. (2006). Influence of tree transpiration on mass water balance of mixed mountain forests of the West Carpathians. Biologia, 61, 305-310. doi:10.2478/s11756-006-0178-6

Penman, H. L. (1956). Estimating evaporation. Transactions, American Geophysical Union, 37(1), 45-50. doi:10.1029/TR037i001p00043

Pomeroy, J. W., Santana, B. W., & Tabler, R. D. (1990). Drifting snow. Cold Regions Hydrology and Hydraulics, 95-146.

Türc, L. (1961). Evaluation des besoins en eau d’irrigation, évapotranspiration potentielle, formule simplifiée et mise à jour [Evaluation of irrigation water requirements, potential evapotranspiration, simplified formula and update]. Ann. Agron., 12, 13-49.

van Dijk, A. I., & Bruijnizeel, L. A. (2001). Modelling rainfall interception by vegetation of variable density using an adapted analytical model. Part 1. Model description. Journal of Hydrology, 247, 230-238. doi:10.1016/S0022-1694(01)00392-4

Published
2018-09-25