• Natalia Kamanina St.-Petersburg Electrotechnical University
Keywords: Carbon nanotubes, organics, inorganics, interface, refraction, laser-matter interaction


Because of the unique energetic, refractive and photoconductive characteristics of effective nano-objects, especially carbon nanotubes, the modification of optical properties of the organic and inorganic materials can be considered as the preferable one via the use of the nanostructuration process. Emphasis has been given to the incorporation of nanoobjects directly in the materials’ body and on their surface. Under the conditions of a surface treatment of the inorganic structures, an IR-laser at the wavelength of 10.6 micrometers was used to orientate carbon nanotubes deposited in the electric field of 100-600 V×cm-1. Dramatic spectral and mechanical parameters changes have been found. Refractive features of the nanostructured organics have been studied via applying the second harmonic of the pulsed Nd-laser at different spatial frequencies and under the nanoparticles sensitization doping such as fullerenes, carbon nanotubes, shungites, quantum dots, and graphenes. A drastically obtained laser-induced refractive index has been established. A prediction has been proposed to extend the area of the application of the systems considered.


Akhmanov, S. A. & Nikitin, S. Y. Physical Optics, 1997, Oxford, University Press, Oxford, UK.

Asokan, V., Velauthapillai, D., Løvlie, R., & Madsen, D.N. (2013). Effect of substrate and catalyst on the transformation of carbon black into nanotubes. J Mater Sci: Mater Electron, 24, 3231–3239. Retrieved from http://dx.doi 10.1007/s10854-013-1233-z

Bhattacharya, S., Banerjee, S., Chattopadhyay, S., & Banerjee, M. (2004). Spectrophotometric study of complexation of benzoyl acetone with [60]- and [70]fullerenes and some other electron acceptors. Chemical Physics Letters, 393, 504–510. Retrieved from http://dx.doi:10.1016/j.cplett.2004.06.073

Ciszewski, M., Mianowsk, A., & Ginter, N. (2013). Preparation and electrochemical properties of sodium-reduced graphene oxide. J Mater Sci: Mater Electron, 24, 3382–3386. Retrieved from http://dx.doi 10.1007/s10854-013-1259-2

Guo, X., Wang, W., Nan, H., Yu, Y., Jiang, J., Zhao, W., Li, J., Zafar, Z., Xiang, N., Ni, Z., Hu, W., You, Y., & Ni, Z. (2016). High-performance graphene photodetector using interfacial gating. Optica, 3(10), 1066-1070. Retrieved from

Kamanina, N.V. (2002). Mechanisms of optical limiting in -conjugated organic system: fullerene-doped polyimide. Synthetic Metals. 127(1-3), 121-128. Retrieved from http://dx.doi:10.1016/S0379-6779(01)00598-7

Kamanina, N.V. (2005). Fullerene-dispersed liquid crystal structure: dynamic characteristics and self-organization processes. Physics-Uspekhi. 48(4), 419-427. Retrieved from http://dx.doi:10.1070/PU2005v048n04ABEH002101.

Kamanina, N.V. & Vasilenko, N.A. (1995) High-speed SLM with a photosensitive polymer layer. Electron. Lett. 31(5), 394–395. Retrieved from http://dx.doi: 10.1049/el:199502585 Published: MAR 2 199

Kamanina, N.V. & Vasilenko, N.A. (1997). Influence of operating conditions and of interface properties on dynamic characteristics of liquid-crystal spatial light modulators. Opt. Quantum Electron. 29(1), 1–9. Retrieved from http://dx.doi:10.1023/A:1018506528934 Published: JAN 1997.

Kamanina, N.V., & Uskokovic, D.P. (2008). Refractive Index of Organic Systems Doped with Nano-Objects. Materials and Manufacturing Processes. 23, 552–556. Retrieved from

Kamanina, N.V., & Vasilyev, P.Ya. Optical coatings based on CNTs for the optical devises and nanoelectronics. Patent RU 2 355 001 C2, priority on 09.01.2007; registered in Russian Federation inventions on 10.05.2009.

Kamanina, N.V., Emandi, A., Kajzar, F., & Attias, A.-J. (2008). Laser-Induced Change in the Refractive Index in the Systems Based on Nanostructured Polyimide: Comparative Study with Other Photosensitive Structures. Mol. Cryst. Liq. Cryst. 486, 1-11.

Kamanina, N.V., Serov, S.V., Shurpo, N.A., Likhomanova, S.V., Timonin, D.N., Kuzhakov, P.V., Rozhkova, N.N., Kityk, I.V., Plucinski, K.J., & Uskokovic. (2012). Polyimide-fullerene nanostructured materials for nonlinear optics and solar energy applications. J Mater Sci: Mater Electron. 23(8), 1538-1542. Retrieved from http://dx.doi 10.1007/s10854-012-0625-9

Kamanina, N.V., Vasilyev, P.Ya., & Studeonov, V.I. Optical coating based on oriented in the electric field CNTs for the optical devises, micro- and nanoelectronics under the conditions when the interface: solid substrate-coating can be eliminated. Patent RU 2 405 177 С2, priority on 23.12.2008; registered in Russian Federation inventions on 27.11.2010.

Kamanina, N.V., Zubtcova, Yu. A., Kukharchik, A. A., Lazar, C., & Rau, I. (2016). Control of the IR-spectral shift via modification of the surface relief between the liquid crystal matrixes doped with the lanthanide nanoparticles and the solid substrate. OPTICS EXPRESS. 24(2), 6 pages. Retrieved from http://dx.doi:10.1364/OE.24.00A270

Kamanina, Natalia V., Serov, Sergey V., Andraud, Chantal, & Bretonniere, Yann. (2015). Organic Systems and Their Photorefractive Properties under the Nano- and Biostructuration: Scientific View and Sustainable Development. Journal of Nanomaterials, 2015, Article ID 278902, 5 pages. Retrieved from

Namilae, S., Chandra, N., & Shet C. (2004). Mechanical behavior of functionalized nanotubes. Chemical Physics Letters. 387, 247–252. Retrieved from http://dx.doi:10.1016/j.cplett.2004.01.104

Neyts, Erik C. (2015). The role of ions in plasma catalytic carbon nanotube growth: A review. Front. Chem. Sci. Eng. 9(2), 154–162. Retrieved from http://dx.doi 10.1007/s11705-015-1515-5

Plimpton, S. (1995). Fast Parallel Algorithms for Short-Range Molecular Dynamics. J. Comput. Phys. 117, 1–19.

Taranko, E., Wiertel, M., & Taranko, R. (2012). Transient electron transport properties of multiple quantum dots systems. Journal of Applied Physics, 111, 023711, 7 pages. Retrieved from http://dx.doi:10.1063/1.3679050

Tersoff, J. (1989). Modeling solid-state chemistry: Interatomic potentials for multicomponent systems. Phys. Rev. B 39, 5566–5568.

Vasilev, A.A., Casasent, D., Kompanets, I.N., & Parfenov, A.V. Spatial Light Modulators, Radio i Svyaz', Moscow, 1987 [in Russian].

Xi, X., Ma, Q., Yang, M., Dong, X., Wang, J., Yu, W., & Liu, G. (2014). Janus nanofiber: a new strategy to achieve simultaneous enhanced magnetic-photoluminescent bifunction. J Mater Sci: Mater Electron, 25, 4024–4032. Retrieved from http://dx.doi 10.1007/s10854-014-2124-7

Xu, Y. & Xiong, G. (2004).Third-order optical nonlinearity of semiconductor carbon nanotubes for third harmonic generation. Chemical Physics Letters, 388, 330–336. Retrieved from http://dx.doi:10.1016/j.cplett.2004.02.092

Yamamoto, Y., Tanaka, H., & Kawa, T. (2004) Construction of oxide–carbide artificial superlattices using C60-assisted pulsed-laser-deposition technique. Journal of Crystal Growth, 265, 198–203. Retrieved from http://dx.doi:10.1016/j.jcrysgro.2004.02.001

Yang, Zu-Po, Ci, Lijie, Bur, James A., Lin, Shawn-Yu, & Ajayan, Pulickel M. (2007). Experimental observation of an extremely dark material made by a low-density nanotube array. Nano Letter, Published on Web 01/09/2008 from American Chemical Society, Retrieved from http://10.1021/nl072369t CCC

,Yu, D., Park, K., Durstock, M., & Dai, L. (2011). Fullerene-Grafted Graphene for Efficient Bulk Heterojunction Polymer Photovoltaic Devices. J. Phys. Chem. Lett., 2, 1113–1118. Retrieved from