RATIONAL DESIGN, SYNTHESIS AND CHARACTERIZATION OF HYBRID MOLECULES WITH PYRAZOLINE, PYRIMIDINE AND THIAZOLIDINE NUCLEI AS POTENTIAL ANTIBACTERIAL AGENTS
Abstract
In this paper, a set of computational tools were used to design and evaluate molecular structures resulting from the combination of the biologically interesting pyrazoline, aminopyrimidine and thiazolidine nuclei (molecular modification) to obtain new bioactive compounds. Key physicochemical properties were calculated (absorption, distribution, metabolism, excretion and toxicity), to determine the bioavailability of the designed compounds and to perform a preselection of 12 derivatives which were then optimized and studied by molecular docking with the receptor PBP3 (4bjp) from Escherichia coli. By these studies, 8 compounds were selected by their binding energies (from -5,36KJ/mol to – 7,05KJ/mol) and significant interactions with the amino acids of the receptor in its active site. In general, the synthesis of the selected compounds was carried out from the α,β-unsaturated carbonyl compounds as precursors. The dihydropyrazole derivatives were obtained from the reaction of chalcones with one equivalent of hydrazine derivatives by one-step cyclocondensations. The pyrimidine series were synthesized starting by the reaction of chalcones and guanidine, giving rise to the corresponding amonopyrimidines, which were then reacted with aromatic and heteroaromatic aldehydes to obtain the acyclic azomethine compounds. The thiazolidine-4-ones were obtained from the aminopyrimidines synthesized above, using three-component cyclocondensation reactions with 2-mercaptoacetic acid and benzaldehyde, in anhydrous toluene or benzene as solvents and using conditions of reflux with Dean- Stark. Finally, assays were carried out aiming to the formation of β-lactam rings, using the Staudinger-type cycloaddition reaction of 2-chloroacetyl chloride with cyclic imines. All the obtained compounds were fully characterized by IR spectroscopy, as well as mono- and bidimensional NMR techniques. The most promising compounds will be evaluated by in vitro assays as potential antibacterial agents.References
Cheng, F., Li, W., Zhou, Y., Shen, J., Wu, Z., Liu, G., et al. (2012). admetSAR: A Comprehensive Source and Free Tool for Assessment. Journal of Chemical Information and Modeling , 52, 3099-3105.
Lipinski, C. A. (2001). Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Advanced Drug Delivery Reviews , 46, 3-26.
Cuellar, L. E. (2013). Infecciones en huéspedes inmunocomprometidos. Revista Medica Herediana , 24, 156-161.
Amábile-Cuevas, C. (2003). In many ways, the fight against antibiotic resistance is already lost; preventing bacterial disease requires thoughtful new approaches. American Scientist , 91, 138-149.
Berman, H., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T., Weissig, H., et al. (2000). The Protein Data Bank. Retrieved 11 de 10 de 2016 from http://www.rcsb.org/pdb/explore/explore.do?structureId=4BJP
Durst, H. D., & Gokel, G. W. (1985). Química Orgánica Experimental. Barcelona, España: Reverté S.A.
Escalona, J., Carrasco , R., & Padrón , J. (2008). Introducción al diseño racional de. Ciudad de la Habana: Editorial Universitaria.
Hodge , H., & Sterner, J. (1949). Tabulation of toxicity classes. Journal American Industrial Hygiene Association Quarterly , 10, 94-97.
Marovac, J. (2001). Investigación y desarrollo de nuevos medicamentos: de la molécula al farmaco. Revista médica de Chile , 129 (1), 99-106.
Moreno-Díaz, H., Villalobos-Molina, R., Ortiz-Andrade, R., Díaz-Coutiño, D., Medina-Franco, J. L., Webster, S. P., et al. (2008). Antidiabetic activity of N-(6-substituted-1,3-. Bioorganic & Medicinal Chemistry Letters , 18, 2871–2877.
Navarrete-Vázquez, G., Moreno-Diaz, H., Aguirre-Crespo, F., León-Rivera, I., Villalobos-Molina, R., Muñoz-Muñiz, O., et al. (2006). Design, microwave-assisted synthesis, and spasmolytic activity. Bioorganic & Medicinal Chemistry Letters , 16, 4169–4173.
Reguero, M., Barreto, E., & Jimenez, F. (1989). Relacion estructura quimica actividad biológica. Una revisión retrospectiva. Revista Colombiana de de Ciencias Quimico-farmaceuticas , 17, 81-84.
Sauvage, E., Derouaux, A., Fraipont, C., Joris, M., Herman, R., Rocaboy, M., et al. (2014). Crystal Structure of Penicillin-Binding Protein 3 (PBP3). PLoS One , 9 (5), 1-11.
Spring, D. (2003). Diversity-oriented synthesis; a challenge for synthetic chemists. Organic & Biomolecular Chemistry , 1, 3867-3870.
Vardanyan, R., & Hruby, V. (2016). Synthesis of Best-Seller Drug. University of Arizona, Tucson, AZ, USA: Academic Press.
World Health Organization. (2016). Antibiotic resistance. Fact sheet.
Copyright information
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (Creative Commons Attribution License 3.0 - CC BY 3.0) that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
info@iseic.cz, www.iseic.cz, ojs.journals.cz