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Abstract: Bitcoin time series dataset recording individual transactions denominated in Euro at the COINBASE market 

between April 23, 2015 and August 15, 2016 is analyzed. Markov switching model is applied to classify the regions of 

varying volatility represented by three hidden state regimes using univariate autoregressive model and dependent mixture 

model. Causality extraction and price prediction of daily BTCEUR exchange rates is performed by means of a recurrent 

neural network using the standard Elman model.  Strong correlations is found between the normalized mean squared error of 

the Elman network (out-of-sample 5-day-ahead prediction) and the realized volatility (sum of minute returns squared 

throughout the trading day). The present approach is calibrated using simulated regime change in standard econometric 

models. Our results clearly demonstrate the applicability of recurrent neural networks to causality extraction even in the case 

of highly volatile cryptocurrency exchange rate time series data.  
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Introduction 

Bitcoin is a cryptocurrency released as an open-source software in 2009, which represents a 

transaction payment system as well as a sort of digital commodity (Bohme et al., 2016).  The bitcoin 

market capitalization as of early 2017 has reached USD 20 billion (CoinDesk, 2017). Free of any 

interventions from regulatory authorities, such as central banks, the distributed block chain system on 

which Bitcoin is based meets varying levels of demand for transaction settlement, and the Bitcoin 

exchange rate series to major currencies such as USD, EUR or GBP are known to highly fluctuate – it 

is not uncommon that gains or losses in tens of percent occur within a week, if not during a single day. 

There exist various Bitcoin exchange markets, such as BitBay, Btcde, Kraken, LocalBtc, or Rock for 

EUR currency, to name just a few of the currently active BTCEUR exchanges. The highly volatile 

nature of the exchange rate represents an ideal environment for the study of the extreme events in the 

field of financial time series. Prediction of extreme events is a key issue not only in economics, but 

also in climatology, geosciences, civil engineering, space technology, etc. In spite of its importance, 

the topic is rather under-studied, in our opinion.  

In this work, we explore the applicability of computational intelligence methods from financial 

analysis to the series of Bitcoin exchange rates (data shown in Fig. 1). Since the Bitcoin price process 

is not stationary but exhibits an appreciation trend, we transform the time series data to the logarithmic 

returns. If the absolute value of the log return is large, it corresponds to an extreme event (bullish or 

bearish, based on the sign). Next we adopt the Hidden Markov Model to categorize the market regime 

into 3 modes: stable, intermediate, and volatile. This approach is excellent in ex-post analysis of the 

data, however lacks in the predictive power for future trend prediction. Consequently, we add the 

realized volatility as an intraday indicator of market stability, and develop a recurrent neural network 

configuration, which uses the past log return history in a moving window to predict the next week’s 

log return behavior. Since the market process mixes both deterministic and stochastic modes, it is not 

a priori clear where the limit of the predictive power of the recurrent neural network is bound. This 

paper shows as the principal result that the mean squared error of the prediction is only limited by the 

level of the realized volatility.   

This paper is organized as follows. Following the literature review in the next section, in Section 3 we 

explain the dataset and outline the methods of its analysis. Section 4 wraps up our results and 

discussions, which are followed by the concluding section. 
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Figure 1: Time series of BTC exchange rate to EUR at COIN-Base market (upper panel). Daily log return and 

realized volatility (on minute scale) for the same trading period (lower panel).  

 

 

 

Source: Authors (data retrieved from COINBASE market) 

Literature Review 

Among the notable attempts to model the prediction of extreme events in a systematic way are those of 

Hallerberg et al., (2008) assessing under what circumstances the extreme events may be more 

predictable the bigger they are, or the recent work by Franzke (2012) who develops a nonlinear 

stochastic-dynamical model. In the economic context, extreme events mean a bubble formation or a 

bubble burst, and their precursors are of vital importance in risk management. To extract the causal 

extent (deterministic segment) buried in the noisy data, various techniques have been proposed, for 

instance recurrent neural network with memory feedback (Elman, 1990) or support vector machines 

(Cortes and Vapnik, 1995). A survey of recent methods can be found in the work of Akansu et al. 

(2016). Binary classifiers separating the upward and downward trend (positive or negative sign of 

logarithmic return), which easily evaluate against the dataset in terms of hit ratios (precision of binary 

classifier output), are common.  

Data and Methods  

The dataset of BTCEUR tick data between 2015-4-23 and 2016-8-5 contains 809,489 records in 478 

trading days transacted at COINBASE market. All data analyses were performed on a Dell PowerEdge 

T420 server, with 2 Intel Xeon E5-2407 2.2 GHz processors and 8 cores, running the GNU/Linux 

Fedora 23 operating system.  

Figure 1 shows the EUR exchange rate data of BTC, including the logarithmic returns on daily scale 

(Rt=log(Pt/Pt-1)) and the realized volatility (RV), which is computed as the sum of the logarithmic 
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returns squared on minute sampling scale during the trading day. The higher the realized volatility, the 

bigger are the uncertainty and spread of trading values  typically observed during the day. The 

probability density of these two quantities is depicted in Fig. 2.  

Figure 2:Density functions for the log return and realized volatility from Fig. 1 

 

Source: Authors 

The first approach to classification of the market trend regime is the state switching model based on 

Hidden Markov Model (HMM). The observable quanity is the sequence of the logarithmic returns. We 

set the number of hidden states to equal to 3, that is a stable, non-volatilite regime, highly volatile 

regime, and an intermediate state in between the two. The extraction of the underlying state 

probabilities is performed using the R-packages depmixS4 and MSwM (https://cran.r-project.org/). 

The theoretical approach closely follows that of Kirikos (2000). While the categorization results are 

quite reasonable, which can be seen in Fig. 3, namely the 3-states are correctly classified in regard to 

the magnitude of the logarithmic return, the predictive power of this approach is quite low (i.e. if we 

assume that the state for the next day is the one for the current day computed by the HMM model). We 

have to therefore resort to a more powerful causality extraction model. See (Gyorfi et al., 2012) for a 

list of possible candidates in the field of machine learning algorithms. 

Figure 3: 3-state HMM for data of Fig. (1) (State #1: stable, #2 intermediate, #3 volatile) 

 

Source: Authors 
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In order to account for the time series correlations accurately, we have decided to apply the recurrent 

neural network (RNN) in Elman configuration (Elman, 1990). We have adopted two different 

topologies, one with a single hidden layer (8 units), and another one with two hidden layers (each from 

5 to 8 units). The contents of the hidden units are fed as an extra input to the network in a feed-back 

loop, thus implementing the concept of the state memory. The implementation is that of the Stuttgart 

Neural Network Simulator, available as an R-package RSNNS. The main research question is whether 

the RNN model can extract the causal extent of the time series, and how it relates to the series of 

realized volatility, which are a measure of the stochastic content of the time series data.  

Results and Discussions 

The main result of the study is given in Fig. 4 for the configuration with two hidden layers, each 

containing 8 units. Thus there are two feed-back loops in the network configuration of RSNNS. The 

following procedure has been used: the RNN model is trained on the past 40-days of input data, and 

evaluated using a 5-day ahead prediction. The possible error outcome is therefore the precision set 

from {0.0, 0.2, 0.4, 0.6, 0.8 and 1.0}. The subset of {0.0, 0.2, 0.4} – that is majority-winning correct 

classification of the binary trend (sign of the logarithmic return) – has the frequency of 70.5 %, 

attesting to the causal content of the series. More importantly, we evaluate the RNN model using the 

standard measure of the Mean Squared Error of the logarithmic return for the 5 predicted values. 

Because of the 40-day moving window, this indicator is unavailable for the first 40 days (zero-level 

flat start in Fig. 4), and the curve is further 5 days shifted, in order to compare with the realized data of 

the 5-day ahead prediction window.  In addition, normalization is used, i.e. the neural network 

receives data standardized to zero-mean and unit standard deviation; these units are applied to the 

evaluation of the MSE. The resulting curve (thick line in Fig. 4, red color in online version) shows an 

almost perfect coincidence, enveloping properly scaled graph of the realized volatility. Since the 

realized volatility measures the noise in the system, i.e. the unpredictable component of the time series, 

we can infer, based on Fig. 4, that the underlying deterministic content, i.e. the causal behavior mode, 

has been extracted properly using the RNN model. The results in Fig. 4 practically do not depend on 

RNN topology within the limit described above. 

To further substantiate the scope of the validity of the RNN model, we have simulated econometric 

series of ARMA model (auto-regressive moving average model) with a single propensity parameter on 

the scale of 0.1 to 0.9. The RNN model reacts to the model discontinuity by the increase in the MSE, 

thus detecting the regime change. The bigger the parameter change, the better the chance is that the 

model change is discovered by means of an MSE increase.    

Figure 4: Learning power of the RNN model: comparison of MSE vs. realized volatility 

 

Source: Authors 
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Conclusion 

This work has established the applicability of the Recurrent Neural Network (RNN model) to the time 

series of Bitcoin exchange rates denominated in EUR currency. We have derived the average time 

series for each day in a 478-day-long sample of tick data from the COINBASE market, computed the 

realized volatility, and analyzed the causal extent of the daily time series using both the standard 

HMM model and the RNN model. The HMM is a poor predictor of the regime changes as well as 

market trends. The RNN model, on the other hand, showed a predictive power related to the spikes of 

the MSE value. Using the realized volatility, we could see that the model performs up to the 

theoretical bounds of its applicability, capturing the full scope of the deterministic contents, with MSE 

therefore closely following the distribution of the stochastic error given by the RV distribution. The 

presented results show a good agreement of the MSE curve and RV distribution. This agreement is the 

better the higher the volatility spike is, which would conform to the model “the bigger the extreme 

event is, the better predicted it can be.” Nevertheless, the presented results are still confined to a 

relatively short period and a single market, and thus further investigation is required to make a more 

general conclusion. We also plan to study the effect of market-making information using open access 

texts (cf. Kim et al., 2016). The present findings may also be useful in considerations of the design of 

future cryptocurrencies other than Bitcoin (Extance, 2015). The presented work is also relevant and 

interesting due to the limited number of available data analysis papers on the Bitcoin subject, although 

the situation has improved recently (Houey, 2016; Kim et al., 2016, Kristoufek, 2013; Lahmiri, 2011; 

Ron and Shamir, 2013) as new cryptocurrency journals are introduced and technical reports of central 

banks all over the world start to pay attention to this still relatively young phenomenon.   
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