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Abstract: Knowledge growth models, based on primary principles, play a fundamental role in the cognitive 
sciences. The authors submit an extension of their model (ENKI) from 2005, with the results of the practical 
testing, which was performed using the method developed for the purpose of model ENKI of solving tasks with 
immediate feedback. This was applied to the curriculum of parallel configuration of resistors in electrical 
circuits. There were 73 pupils from six elementary schools in attendance for testing. Analysis based on ENKI 
indicates that three autonomous units (scopes) were evaluated simultaneously during the assessment. Results 
showed that 25% of pupils knew the curriculum, 9% of pupils showed no improvement, while 66% of pupils 
showed an increased success in accordance with the ENKI model (significance level 𝛼 = 0.05). Solving 7.2 
typical tasks on average, by a method of immediate feedback resulted in 90% of the pupils mastering the 
curriculum. 
UDC Classification: 37.01/.09 DOI: http://dx.doi.org/10.12955/cbup.v4.872 
Keywords: cognitive science, electrical circuit, testing elementary students.

 
Introduction 
Neuroscience provides an insight into the formation of cognitive structures in the brain from a 
biological point of view (Fields, 2005). Research indicates that repetition creates long-lasting neural 
connections in the brain in processes which are random in essence. If the created structure of 
connections is correct it allows the person to use the new knowledge in practice with success. The 
latest research indicates that connections with autonomous functionality may also be a single neural 
connection (Quiroga, Kraskov, Koch, & Fried, 2009). Many empirical mathematical models of the 
knowledge build-up are known to date. Simple models were built, for example, by Hickling (1976), 
Preece (1984), and Anderson (1983). The scientific description of knowledge or growth of knowledge 
is crucial to gain more insight into the understanding of experimental learning. There are numerous 
approaches to implement and analyze trials, ranging from the use of standardized tests for gain factor 
measurement (Bao, 2006; Meltzer, 2002), to international studies of large groups of people (Bao et al., 
2009). The Efficacy Norm Increase of Knowledge (ENKI) model is a unique approach which comes 
from the probability description of neural connections growing in the brain during the process of 
learning. 
The ENKI Model 
In the process of learning, unused synapses of a neuron are activated by firing an impulse through 
them. The synapses are activated and short-term memory forms. The short-term memory formed by 
the firing is converted into long-term memory by repetition in a process controlled by the nucleus of 
the neuron. This is a random process in the sense that there is no mechanism addressing a sole 
activated synapse between hundreds of non-activated synapses of the neuron (Fields, 2005). 
The probability of converting the short-term memory to long-term memory, accomplished by the 
activated synapse, by one repetition is 𝑝. If no repetition, is done the activated state of the synapse 
diminishes back to its original (non-activated) state within a few hours. This temporary synaptic 
strengthening is a cellular model of short-term memory. 
Successful actions are repeated in the process of learning. On the one hand, repeated actions firing 
signals across the same synapses elongate the activated state of the synapses. On the other hand, the 
nucleus of the neuron is stimulated to repeat the process of converting short-term memory into long-
term memory. This is how long-lasting synapses are formed in repeated random processes. On this 
basis, the model ENKI was constructed (Lacsný, 2005). 
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This model has a significant assumption that the successful action needs repetition in a specific period 
of time, as defined by chemical processes in neural nuclei (Fields, 2005). Every succeeding repetition 
needs some delay between repetitions that is not too short and not too long. The number of repetitions 
in a successful learning process is proportional to time – the duration of the learning process. When 
the formation of the required neural structure is interrupted for an unnaturally long time, random and 
spontaneous processes degrade the activated (but unstable) neural structures (Lacsný, 2005). 
The concept that knowledge is growing exponentially in time is generally accepted in most 
phenomenological models (Gamble, 1986; Hassan, 2005; Pritchard, Lee, & Bao, 2008). In ENKI, this 
property is a consequence of principles stated in Fields (2005). ENKI was refined on the basis of 
research in physical problem solving from 2005 to date (Lacsný, 2005; Benko, 2013; Dudakova, 
2016). 
In its simplest form, ENKI predicts the probability 𝑃(𝑛) of achieving success in solving the 𝑛-th 
problem in a sequence of similar problems. In the sequence of similar problems there must be at least 
one common feature; a particular, well-defined task that must occur in each problem of the sequence. 
Such a task may be to construct a two-dimensional cartesian frame, to find the roots of a second order 
equation, to make a decision about whether an image shows a parallel or serial circuit, or something 
else meaningful from the viewpoint of evaluability. In more detail, ENKI predicts only the probability 
𝑃(𝑛) of achieving success in solving these common tasks occurring in the sequence of problems. 
The probability 𝑃(𝑛) has the form 

 𝑃 𝑛 = 1 − 𝑞! !!  , (1) 
where 𝑁! is the number of autonomous units in the neural sub-network responding to the ability to 
correctly solve the observed common task of the sequence of problems. In this instance, 𝑁! is assumed 
to be the number of synapses in the neural sub-network. Then 𝑞 = 1 − 𝑝 is the probability that an 
arbitrary but concrete synapse of the neural sub-network is not established by solving the common task 
in the sequence of problems. The model assumes that 𝑞 is the same for all synapses and that its value 
is not dependent on time; more precisely, not dependent on the number of repetitions. 
The ENKI model is language independent and is not task specific. The model is capable of fitting the 
recollection growth or knowledge growth for various complexity of tasks (Benko, 2013), but, in its 
current form, is a probabilistic model of learning of one individual. 
In accordance with this limitation, we observed during real testing that not every participant achieved 
an increase of knowledge. To verify the model, physics problem solving abilities were analyzed in 
primary and secondary schools, and also universities. We present results obtained in the primary 
schools only. However, these are very similar (from the viewpoint of practicality of ENKI) to other 
results not yet published. 
On one hand, some of the pupils were unable or had no leaning to achieve success in testing, on the 
other hand, some had pre-requisite knowledge prior to testing. 

For this purpose, the model prescription was extended by the parameters, 𝜈(!), 𝜈(!), 𝑎𝑛𝑑 𝜈(!). Here 
𝜈(!) was the ratio of pupils who possessed the required knowledge and were ready to use this 
knowledge (group 𝐺!). The ratio 𝜈(!) denoted pupils who achieved progress in problem solving (i.e., 
students who had growth in knowledge, group 𝐺!). The ratio 𝜈(!) of pupils who failed in solving the 
problem sequence was then 𝜈(!) =  1 − 𝜈(!) − 𝜈(!) (group 𝐺!). After this modification, the probability 
𝑃(𝑛) had the form 

 𝑃(𝑛) = 𝜈 ! + 𝜈(!) 1 − 𝑞! !! (2) 
The new parameters allowed us to quantify some initial conditions influencing the trials. 
This modification of the ENKI model also appeared to be a powerful tool in assessing the quality of 
the course, and also the motivation of pupils in the course as we show below. 
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The Trial in Primary Schools 
The trial, presented here, was accomplished in 2013 in primary schools with 𝑁 = 73 pupils 
participating. Testing was prepared for pupils aged from 14 to 15 years. The exercise was to calculate 
the equivalent electrical resistance of two or more resistors connected in parallel. The pupils had 
passed the curriculum three months before the trial. 
The testing methodology consisted of: (1) review and interpret the curriculum, using multimedia 
presentation instead of the standard textbook (Stelzer, Gladding, Mestre, & Brooks, 2009); (2) the first 
of ten physics problems being presented to the pupils; and (3) after the task finished, the pupils were 
given feedback on the solution, and this involved the correctness of solutions and the entire solution 
method necessary for use. Steps (2) and (3) were repeated for the remaining nine physics problems. 
When the pupils solved problems incorrectly, and the mistake was one of the most frequent 
(expected), feedback included information about that mistake and how it should be avoided in 
subsequent tasks. 
Each task was evaluated as “1” in a case of correct answer and “0” in any other case. The obtained 
data were averaged (𝑠!) and plotted to show relative efficiency depending on the number of repetitions 
(solved physics problems). 
Results 
We estimated parameters 𝑞,𝑁! , 𝜈(!), and 𝜈(!) in Equation (2) by minimizing 𝜒!, as follows: 

 𝜒! = 𝑁! !!!! ! !

!!!
!
!!!         (3) 

where 𝑠! was the average score of pupils for the 𝑛-th task in the mentioned sequence of tasks (𝑁 = 10 
physics problem) and 𝜎!! the variance of scores in the 𝑛-th task. 
We assumed that data for a fixed 𝑛 (number of repetition) had binomial distribution 
(𝜎!! = 𝑁 𝑃 𝑛 1 − 𝑃 𝑛 , but also normal distribution was appropriate for data near the theoretical 
values given by Equation 2. 
We found the following values for the parameters and confidence intervals at the significance level 
𝛼 = 0.05: 𝑝 = (0.653 ±  0.019), 𝑁𝑎 = (1.61 ±  0.18), 𝜈(𝑟) = (0.199 ± 0.013), and 𝜈 𝑝 = (0.702 ±
0.016). The experimental value of 𝜒! = 2.176 and the 𝜒! test failed at the significance level 
𝛼!"#  = 0.35. 
To avoid problems with the 4-dimensional domain of confidence, we assumed that all parameters 
(𝜈 . , 𝑞, 𝑎𝑛𝑑 𝑁!) contributed to the uncertainty at the same rate (with the same probability). Despite 
pupils having already studied the curriculum three months prior, only about 20% (𝜈 ! = 0.199) of the 
students were able to solve the problems correctly from the beginning of the assessment. About 70% 
(𝜈 ! = 0.702) of them indicated progress during the assessment and about 10% had no success or 
motivation to succeed during the assessment. To obtain more information about circumstances 
influencing the growth of knowledge during the assessment, we discuss the meaning of the 
autonomous units in the ENKI model in the following. 
The current form of the ENKI model was based on the microscopic background of the learning 
process. The results obtained by analyzing data were interesting from two points. First, 𝑁! was not an 
integer with 𝑁! = (1.61 !!.!"!!.!"). Second, 𝑁! had a very low value (1.61). In this version of the model, 
𝑁! , was the number of synapses necessary to achieve success in solving the given problem and these 
synapses were established independently. 
The low value of 𝑁! may indicate two possibilities, not excluding of each other: (1) the ability to solve 
a new problem may be connected to only one synapse (connecting to the existing “library”' of long-
lasting synapses), and (2) an autonomous unit is a set of synapses that fire simultaneously during the 
problem solving. 
In either case, autonomous units develop independently during the learning process. In the frame of 
ENKI that means that autonomous units may be built up individually. 
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It may be, that the brain has its “built-in” algorithm to divide any problem into smaller pieces. These 
pieces have their own history of learning and each their own background consisting of other correct 
working pieces, a library. 
We show below, using the ENKI model, that the number of autonomous units is insignificant, though 
greater than one and most probably equal to three, when the task involves calculating the equivalent 
electrical resistance of two or more resistors connected in parallel. 
The non-integer property may indicate, in our opinion, the following features influencing the results of 
an assessment: (1) the group of pupils achieving progress during the assessment (group 𝐺!) was 
composed of groups with different learning histories. They did not have all autonomous units or the 
library required for solving the tasks; (2) autonomous units consisted of a greater number of synapses 
and therefore all autonomous units had their own parameter, 𝑝; and (3) all synapses operated with a 
different parameter, 𝑝. 
We analyzed the most probable cases.  
If the required sub-network consisted of two autonomous units 𝐴! and 𝐴!,  the most general form of 
the probability 𝑃(𝑛) was 

𝑃 𝑛 = 𝜈 !  + 𝜈!
! 1 − 𝑞!!  + 𝜈!

! 1 − 𝑞!! + 𝜈!"
! 1 − 𝑞!! 1 − 𝑞!!   (4) 

where the second v term describes the subgroup 𝐺!,! of pupils with the created and operating 𝐴! but 
not 𝐴!. The third term describes the subgroup 𝐺!,! of pupils with the created and operating 𝐴! but not 
𝐴!. The last term describes the subgroup 𝐺!,!" of pupils who had not created 𝐴! nor 𝐴!. 

We found the following values for the parameters and confidence intervals at the significance level 
𝛼 = 0.05: 𝑞! = (0.708  !!.!"!!!.!"#), 𝑞! = (0.484  !!.!"#!!.!"#), 𝜈 ! = (0.222  !!.!!"!!.!"!), 𝜈!

! = (0.00  !!.!!!!!.!"#), 
𝜈!
! = (0.00  !!.!!!!.!!), 𝑎𝑛𝑑  𝜈!"

! = 0.00  !!.!"!!.!" . The experimental value of 𝜒! = 2.168 and the 𝜒! test 
failed at the significance level 𝛼!"# = 0.08. 
The results show that in Equation 4, one can exclude the second and third term before the 
minimization procedure (greater number of freedoms). 
Considering three autonomous units 𝐴!,𝐴!, and 𝐴! we have several possibilities that cannot be 
analyzed in one step due to the large number of parameters to estimate. The same is true for larger 
number of autonomous units. Analyzing, step by step, we found the most reliable structures, as 
follows: 

 𝑃!"(𝑛) = 𝜈 ! + 𝜈!"
! 1 − 𝑞!! 1 − 𝑞!!  (5) 

 𝑃!"#(𝑛) = 𝜈 ! + 𝜈!"#
! 1 − 𝑞!! 1 − 𝑞!! 1 − 𝑞!!  (6) 

 𝑃!"#$(𝑛) = 𝜈 ! + 𝜈!"#$
! 1 − 𝑞!! 1 − 𝑞!! 1 − 𝑞!! 1 − 𝑞!!      (7) 

The dependence of every 𝑃.(𝑛) is just the same with no significant difference and therefore also the 
experimental value of 𝜒! is just the same (𝜒!"! = 2.168, 𝜒!"#! = 2.148, 𝑎𝑛𝑑 𝜒!"#! = 2.132). 
Most important is the level of significance at which the 𝜒! test failed. Using the same notation, we 
found that the 𝜒! test failed at level 𝛼!" = 0.349, 𝛼!"# = 0.417, and 𝛼!"#$ = 0.09. 
We can see, that Eq. (5) and (6) are competitive structures. Analyzing the structure, as follows: 

  𝑃 𝑛 = 𝜈 ! + 𝜈!"
! 1 − 𝑞!! 1 − 𝑞!! + 𝜈!"#

! 1 − 𝑞!! 1 − 𝑞!! 1 − 𝑞!!   (8) 

we obtain 𝜈!"
! = 0.000 !!.!!!.!!". 

After all we can conclude that the most reliable description of the results of the assessment is given by 
Equation 6 with the values of estimated parameters 𝑞! = (0.708 !!.!"#!!.!"#),  𝑞! = (0.457 !!.!"#!!.!!!), 
𝑞! = (0.302 !!.!"#!!.!!"), 𝜈 ! = (0.257 ±  0.009), and 𝜈!"#

!  = (0.655 ± 0.011).  
The result is shown in Figure 1. 
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Final Remarks Concerning the Data Analysis 
We averaged the answers of the 73 pupils for each task of the assessment. Hence, 10 pieces of 
averaged data were analyzed using the model ENKI and confidence intervals were relatively wide. We 
aimed to avoid possible ambiguities in our analysis by comparing our results with those obtained using 
randomly generated data that had Bernoulli distribution: 𝑁

𝑘  𝑝!𝑞 !!! ,  where 𝑁 = 73 was the 
number of pupils in the assessment, 𝑘 the number of correct answers, and 𝑝 = 𝑃(𝑛) and 𝑞 = 1 − 𝑃(𝑛) 
the probabilities given by ENKI. We found that our standard analysis was sufficiently sound and 
capable of finding the correct values of estimated parameters within the confidence interval.  

1) The ENKI model is a non-linear model for the most part (it is linear in parameters 𝜈 only), 
which gives the probability 𝑃(𝑛) in the form 

 𝑃(𝑛) = 𝑃!(𝑛)!   (9)  
where 𝐼 = {𝑖!,… , 𝑖!} is an index set and 𝑃!(𝑛) is partial probability describing simultaneous 
evolution of autonomous units 𝐴!! ,… ,𝐴!!, as follows: 

 𝑃! 𝑛 = 𝜈!
! 1 − 𝑞!!!∈ ! ;        𝜈!

! ≥  0  (10)  

and for 𝐼 = ∅ we have 𝜈 ∅
! ≡ 𝜈 ! . Every 𝑃! 𝑛  is a monotonic function of 𝑛 (if 𝐼 = ∅, 

𝑃∅ = 𝑐𝑜𝑛𝑠𝑡.), and data fluctuation cannot be removed by increasing the number of autonomous 
units in ENKI. In other words, the number of degrees of freedom could have been 
underestimated in the analysis. 

2) On one hand, the average score, 𝑠!, may have achieved its maximal value promptly, and further 
repetition yielded no further significant contribution to analysis. It is the case also for relatively 
large number of autonomous units. On the other hand, one cannot implement a large sequence 

Figure 1: Experimental data (averaged score 𝑠!) fitted by ENKI model (solid curve) and confidence 
bands on the level of significance 𝛼 = 0.05 (filled area between dashed curves). The values of 
estimated parameters are 𝑞! = (0.708 !!.!"#!!.!"#), 𝑞! = (0.457  !!.!"#!!.!!!), 𝑞! = 0.302  !!.!"#!!.!!" , 
𝜈 ! = (0.257 ± 0.009), 𝜈!"#

! = (0.655 ± 0.011). The confidence band shows the theoretical 
domain with 95 % of the most important data. The narrowness of the band also confirms the 
reliability of analysis using the ENKI model.  

 

Source: Authors 
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of complicated problems (problems with many autonomous units) in assessment for its time-
consuming pattern. (This is not the case if one investigates short-term memory.) 

Results and Discussion  
We analyzed the growth of knowledge in 73 pupils in primary school during an assessment. Pupils 
solved ten similar physics problems and explanatory feedback was given immediately after completing 
a task from the aforementioned sequence of tasks. The exercise was the same in all tasks, to calculate 
the equivalent electrical resistance of two or more resistors connected in parallel. Pupils had the 
curriculum three months before the trial. Each score was averaged across the 73 pupils and analyzed 
using the ENKI model. 

1) Our analysis showed that, most probably, three independent scopes were formed in the learning 
process during the assessment, and this influenced the score of pupils. Using the average 
scores, we could only deduce the values, but the ENKI model indicated the number of 
autonomous units in a learning process with high significance. On the other hand, we can find, 
not only the number of autonomous units playing a significant role in the learning process, but 
also decipher its evolution during the learning process (Figure 2). This was the benefit of the 
ENKI model. 

Figure 2: The evolution of individual averaged scores 𝑠!,!, 𝑠!,!, 𝑠!,! and 𝑠!"#,! connected 
with individual autonomous units 𝐴!,𝐴!,𝐴! (dashed curves) and experimental data fitting 
by ENKI (solid curves) in group 𝐺! of pupils. Autonomous units 𝐴! and 𝐴! are formed 
soon, while 𝐴! is more responsible for the evolution at the final stage 

 

Source: Authors 

In much of the present research in physics education, it is considered that knowledge consists 
of smaller units than the concepts that are discussed in curricula. Hammer (1996, 2000), 
Minstrell (1982), diSessa and Sherin (1998), diSessa (1988), Redish (1994), and McDermott 
and Redish (1999) have all alluded to the notion that students do not have well developed or 
coherent mental models that they use, but rather activate pieces of knowledge. Pupils may 
understand units differently (Reid & Yang, 2002). A part, expected as a single unit by an 
expert, could consist of many subunits forming independently in the learning process. 
However, the number of autonomous units identified by ENKI may return the genuine 
algorithm of the brain applied during the learning process, rather than our concepts of units (or 
subunits) in the curricula. 
Consequently, it should come as no surprise that students often learn far too little in physics 
courses, although they may learn more when courses are structured to facilitate better 
evaluative feedback to students via interactive engagement methods (Cummings, Marx, 
Thornton, & Kuhl, 1999; Hake, 1998). 
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2) The typical S-like shape in the score progression occurs when more autonomous units are 
employed (Figure 3). 

Figure 3: The evolution of 𝑃(𝑛) for up to 20 repetitions and for different number of 
autonomous units. We used the simplest form given by Eq. (1) and with 𝑞 = 0.7 for all 
autonomous units.  

 

Source: Authors 

The number of problems solved in a sequence with immediate feedback is crucial to achieving 
long-lasting knowledge. In our case, 3.8 tasks (on average) were necessary to acquire the 
required knowledge in the case of 50% of group 𝐺! pupils achieving progress during the 
assessment. For the same result in the case of 90% of the group 𝐺! an average 7.2 tasks were 
needed. 
This is an important common feature of any learning process, often underestimated by teachers 
and pupils. Our finding supports the statement that only 25.7% of pupils solved the tasks of the 
assessment correctly from the beginning despite having passed the curriculum three months 
prior. 
Model ENKI allows for estimation of score progression in any learning process. If the values 
of parameters are unknown, one can make a rough estimation; for example, 0.5 for 𝑞 (as an 
average in our case) and an integer number for the number, 𝑁! , of autonomous units (Equation 
1 is ideal for this purpose). The number of autonomous units is at least the number of 
independent units that are learned in the process. Seeing the “learning curve’’ may provide a 
suitable method for guiding younger teachers with less experience. 

3) The ENKI model is capable of supporting the design and evaluation of online learning 
activities. If, for example, 𝜈 !  is high, the activity underestimates the level of participants. If 
𝜈 !  is too high, the activity overestimates the level of participants, or their motivation is low. 
For example, authors of the article performed a trial at a certain technical university with 710 
undergraduate students. Our finding was 𝜈 ! ≈ 0.6 and 𝜈(!) ≈ 0.23. In other words, 60% of 
students solved correctly the common parts of problems from the beginning of the assessment, 
but 23% of students achieved no progress during the assessment, with no effect of the 
instantaneous feedback. 

Conclusion 
ENKI appears as a trustworthy tool to analyze cognitive processes. Estimated parameters have a good 
interpretation; therefor ENKI is also an excellent tool for computer simulations of learning processes. 
Combined with the instantaneous feedback, ENKI presents an integrated learning-assessment 
procedure.  
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