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Abstract: The purpose of the article is to determine the Type I error and Average Run Length values for charts 𝑋̅  and R, for 

which control limits have been determined based on the Skewness Correction method (SC method), with an unknown 

probability distribution of the qualitative feature being tested. The study also used the Monte Carlo Simulation, in which two 

sampling methods were used to obtain random input scenarios - matching theoretical distributions (selected skewed 

distributions) and bootstrap resampling based on a manufacturing company’s measurement data. The presented article is a 

continuation of Czabak-Górska's (2016) research. The purpose of the article was to determine Type I error value and ARL type 

A for chart 𝑋̅  and R, for which the control limits were determined based on the skewness correction method. For this purpose, 

measurement data from a company producing car seat frames. Presented case study showed that the chart determined using the 

skewness correction method works better for the data described by the gamma or log-normal distribution. This, in turn, may 

suggest that appropriate distribution was selected for the presented data, thanks to which it is possible to determine the course 

and nature of the process, which is important from the point of view of its further analysis, e.g. in terms of the process capability. 

UDC Classification: 338.3; DOI: http://dx.doi.org/10.12955/cbup.v6.1293 

Keywords: 𝑋̅ and R Control Chart, Monte Carlo Simulation, skewed distribution, Skewness Correction method, Type I error, 

Average Run Length 

 

Introduction 

Control charts are still an easy and effective tool in Statistical Process Control (SPC). The most common 

charts used in the industry are still the mean (𝑋̅) and range (R) charts. Traditional control charts are 

based on the assumption that the distribution of the controlled feature / characteristic is Gaussian 

(normal). As a consequence, Type I error, within the natural variability of the ±3σ process, in the case 

of the controlling process for this type of charts, it amounts to 0.27% and 0.46% for a five-element 

sample according to the research of Chan and Cui (2003). However, Karagöz and Hamurkaroglu (2012) 

pointed out that the use of control limits calculated on the basis of formulas proposed by Shewhart, in 

the case of skewed variation of the examined feature / characteristic, increases the Type I Error defined 

as the probability of a false signal about the destabilization of the process in the case of the controlled 

processes. This, in turn, may lead to a situation in which unnecessary corrective actions will be 

introduced, which may actually cause its deregulation. 

The purpose of the article is to determine the values of Type I error and Average Run Length (ARL) for 

chart 𝑋̅ and R, for which control limits have been set based on the Skewness Correction method (SC 

method), with an unknown probability distribution of the examined qualitative feature. The study also 

uses the Monte Carlo Simulation method, in which two sampling methods were used to obtain random 

input scenarios - matching theoretical distributions (selected skewed distributions) and bootstrap 

resampling, based on measurement data from a production company. The presented article is a 

continuation of Czabak-Górska's research on SPC in the event that the measurement data are skewed 

(Czabak-Górska, 2016). 

Assumptions and study method 

The study was carried out in an enterprise that manufactures car seat frames. The measurements 

concerning the analyzed characteristics were taken in accordance with internal procedures for six 

consecutive days and concerned the length of the pipe after its formation (for more details on the course 

of the process analysis, see Czabak-Górska's (2016) work. 

In the first stage of the study, the measurement data were analyzed in terms of the possibility of their 

description with the use of a normal distribution and characteristics which show the nature of the skewed 

distribution were selected. Next, control limits were determined according to the method of skewness 

correction in accordance with the assumptions of the stabilization method, which was described, for 

example, by Łuszczak and Matuszak-Flejszman (2007), thanks to which it was guaranteed that the 

process is statistically stable (there are no assignable causes, only natural causes of variation). In 
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addition, one rule was adopted, which indicates the appearance of a signal of possible deregulation of 

the process, in the form of crossing the control limits (other rules have been described, e.g. by Jamali 

and Jinlin (2006)). Next, a Monte Carlo Simulation (MMC) was performed, which included the 

following steps: 

1. Adjustment of theoretical distributions to measurement data: gamma, Burr, log-normal.  

2. Random generation based on the parameters obtained from step one of the simulation series of 

measurements according to the adjusted distributions (120 measurements). 

3. Determination of the sample mean 𝑋̅ and sample ranges R (for the appropriate number of 

observations k = 3 in each sample). 

4. Checking the number of signals for exceeding the control limits for the chart 𝑋̅ and R based on 

pre-determined control limits. 

5. Determination of the probability value so that the measurement exceeds the control limits (Type 

I error). 

6. Repetition of steps 2-5 20,000 times. 

7. Determination of the average Type I error. 

8. Determination of the ARL value. 

Assumptions and study method 

According to Mielczarek (2007), the Monte Carlo simulation method (MMC) is one of the most popular 

methods of building a stochastic simulation model that is used to study the behavior of the actual process. 

It is also worth stressing that in the analyzed courses of the process (e.g. production), some of its 

elements are characterized by a random course, which means that there is no 100% certainty that the 

further course of the phenomenon or process under investigation will be consistent with the adopted 

model. Mielczarek (2007), emphasizes that the key element in the construction of a stochastic simulation 

is a proper (the most probable) selection of an input scenario. The sampling method, i.e. matching the 

theoretical distribution, quasi-random sampling, bootstrap resampling, etc., may also have an impact on 

the obtained simulation result. In qualitative applications, the method of bootstrapping, in addition to 

the theoretical adjustment, may be useful, based on the assumption that the process will take place just 

like in the past. According to Kuhl et.al. (2006), this approach boils down to generating further data 

directly from historical data. Thanks to this, it is possible to avoid problems related to, for example, 

choosing the number of classes or finding the best match. However, despite the predominance of 

bootstrap sampling over matching theoretical distributions, in situations where a representative sample 

is not collected, this approach turns out to be ineffective (this was indicated by the results of the 

simulation carried out by the author). Due to the fact that available measurement data do not meet this 

criterion, in subsequent analysis, it was decided that the adjustment with theoretical distributions would 

be used. 

Type I error and Average Run Length 

Chan and Cui (2003) suggest that it is possible to evaluate performance of Control using a Type I error, 

which determines the probability that a single signal will exceed predetermined control limits for the 

chart  𝑋̅  and R (signal with lack of statistical process regulation): 

   
𝛼𝑋̅ = 1 − 𝑃(𝐿𝐶𝐿𝑋̅ ≤ 𝑋̅ ≤ 𝑈𝐶𝐿𝑋̅|𝐿𝐶𝐿𝑋̅ , 𝑈𝐶𝐿𝑋̅)

𝛼𝑅 = 1 − 𝑃(𝐿𝐶𝐿𝑅 ≤ 𝑋̅ ≤ 𝑈𝐶𝐿𝑅|𝐿𝐶𝐿𝑅 , 𝑈𝐶𝐿𝑅)
               (1) 

According to Govindaraju (2005) for Shewhart control charts with control limits within the ± 3σ 

variation range, the α probability is assumed to be constant, as opposed to, e.g. the CUSUM card, where 

small fluctuations of this size are acceptable. However, α cannot be very variable for any procedure for 

the designation of control charts. For controllable processes, α should be small or, if possible, permanent. 

Montgomery (2009) indicates that for the controlled process, it is also possible to determine the average 

number of observations needed to detect process dysregulation referred to as the ARL index and 

expressed as the inverse of Type I error: 

       𝐴𝑅𝐿 =
1

𝛼
.                                                  (2) 

Research carried out by Govindaraju (2005) shows that the expression (2) refers to the use of control 

charts in the case of production with long and very long production runs and has been referred to as 



CBU INTERNATIONAL CONFERENCE ON INNOVATIONS IN SCIENCE AND EDUCATION 

MARCH 21-23, 2018, PRAGUE, CZECH REPUBLIC  WWW.CBUNI.CZ, WWW.JOURNALS.CZ 

 

1052 

ARL type B, while in the case of short and medium production runs, to determine the average number 

of observations needed to detect the process disruption, ARL type A should be used: 

𝐴𝑅𝐿 =
1−(1−𝛼)𝑠

𝛼
,                                                    (3) 

where: s - length of the production run. 

Case study 

The analysis began by examining whether the measurements made are normal or approximately normal 

(the distribution of the data studied is unknown). For this purpose, the Shapiro-Wilk test at a significance 

level α = 0.05 was used (Tab. 1). 

Table 1: Shapiro-Wilk test results (α = 0.05) for the pipe length after forming in the STATISTICA 

program 

Normality test 

N 

(number of measurement) 

W p 

177 0.969499 0.000636 
 

Source: Czabak-Górska I.D., 2016 

Test results presented in Table 1 clearly indicate that the length of the pipe after forming cannot be 

described by normal distribution (p <α). For this reason, the control limits were determined using the 

skewness correction method (Figure 2), which was described, among others, by Karagöz and 

Hamurkaroglu (2012). In addition, basic descriptive statistics were also calculated (Table 2). 

Table 2: Descriptive statistics (STATISTICA) 

Descriptive statistics 

N 

(number of measurement) 

Mean Standard deviation 

(SD) 

Skewness 

177 405.0620 0.2997 0.6547 
 

Source: Authors 

The determined skewness coefficient from Table 2 indicates that the distribution is skewed right, which 

means that in most cases the length of the pipe after forming takes values lower than the mean (405.06 

mm). 

Figure 1: Chart 𝑋̅ and R for the length of the pipe after forming determined using the SC (Matlab) 

method 

 

Source: Authors 
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Chart 𝑋̅ (Figure 1) has two points exceeding the control limits (the upper one - measurement 17 and the 

lower one - measurement 38). For the adopted rule of assessment of process stability and analysis of the 

course of the process using two control charts (Figure 1), the process should be considered to run in an 

unstable manner (more on the interpretation of control charts can be found in the work of, Greber 

(2000)). Since there are single signals, according to the idea of the design method presented by Łuczak, 

Matuszak-Flejszman (2007), measurements were eliminated that exceeded the control limits and were 

recalculated (Figure 2). In this way, control limit values have been obtained for the control process.  

Figure 2: Chart 𝑋̅ and R for the length of the pipe after forming determined using the SC method 

after removing the signals (Matlab) 

 

Source: Authors 

The next stage of the analysis included the adjustment of the theoretical distributions based on empirical 

data, which consisted of the results of the measurement data (pipe length after forming). Due to the fact 

that the measurement data show the nature of a skewed distribution, the following distributions were 

used: gamma, Burr and log-normal. The probability density of the adjusted distributions together with 

the mean value (μ) and the standard deviation (σ) are presented in Figure 3. It should also be emphasized 

that the gamma and log-normal distribution curves overlap and constitute the best match, due to the fact 

that the position parameters μ and the shape σ coincide with the histogram.  

Figure 3: Probability densities for matched distributions (Matlab) 

 

Source: Authors 
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Next, using the MMC, another series of one hundred and twenty-three-sample samples were generated 

separately for the gamma distribution, the Burr distribution and the log-normal distribution. Then, the 

mean and sample ranges were counted. Next, the amount of points by which the control limits are 

exceeded on the chart 𝑋̅  and R, respectively, was noted, and then the probability of the appearance of a 

false signal on the control chart was calculated; also, ARL type A value was determined for s = 3,000 

(Tab. 3). 

Table 3: Monte Carlo simulation results for gamma, Burr and log-normal distributions (Matlab) 

Gamma distribution Burr distribution Log-normal distribution 

𝑋̅ R 𝑋̅ R 𝑋̅ R 

α ARL α ARL α ARL α ARL α ARL α ARL 

0.0156 64 0.0058 172 0.0202 50 0.0213 47 0.0157 64 0.0058 172 
 

Source: Authors 

At this point it is worth mentioning that according to Govindaraju (2005), in the case of performing 

several simulations, values provided in Table 3 are constant. It is also visible, that for both gamma and 

log-normal distributions, practically the same results were obtained (slight differences result from the 

fact that rounding of all determined values to two decimal places was performed), which means that the 

measurement data may have the character of these distributions. In the case of the Burr distribution, 

there was a slight difference between the Type I error for the mean chart 𝑋̅ compared to other control 

charts, in contrast to the value of this error for the R chart. 

In Table 3, it can be read that, for example, for the gamma distribution for a Type I error mean chart, 

the error amounts to 0.0156, which means that, on average, a false signal will appear about 15-16 times 

per 1000 measurements. The ARL value for this chart, in turn, suggests that in order to detect the process 

deregulation, an average of 64 three-element samples should be taken. In addition, for the range chart, 

Type I error amounts to 0.0058, so a false signal will appear about 5-6 times per 1000 measurements, 

which entails the need to take 172 three-element samples so that the process's deregulation is detected. 

It can be concluded that the control chart presented in the paper works better when data can be described 

using a gamma or log-normal distribution, which can be an additional criterion confirming the 

appropriate selection of the distribution to the presented data. This, in turn, in a sense gives a more 

complete picture of the course and nature of the process, thanks to which it will be possible to perform 

its deeper analyzes, e.g. in terms of the qualitative ability. 

Conclusion 

The purpose of the article was to determine Type I error value and ARL type A for chart 𝑋̅  and R, for 

which the control limits were determined based on the skewness correction method. For this purpose, 

measurement data from a company producing car seat frames of the length of the pipe after forming, as 

well as the adjustment using selected skewed distributions (gamma, Burra and log-normal) were used, 

which made it possible to simulate the further course of the process.  

For the gamma distribution, the following Type I error values and ARL type A functions were 

obtained: 

▪ Mean chart 𝑿̅: α=0.0156, which means that approximately 15-16 false signals will appear in 

1000 three-element samples. ARL=64, that is, to detect the process deregulation, an average of 

64 three-element samples should be taken. 
▪ Range chart R: α=0.0058, which means that approximately 5-6 false signals will appear in 

1000 three-element samples. ARL=172, that is, to detect the process deregulation, an average 

of 172 three-element samples should be taken. 

In turn, for the Burr distribution, the following values of the tested parameters were obtained:  

▪ Mean chart 𝑿̅: α=0.0202, which means that approximately 20-21 false signals will appear in 

1000 three-element samples. ARL = 50, that is, to detect dysregulation of the process, an average 

of 50 three-element samples should be taken. 
▪ Range chart R: α=0.0213, which means that approximately 21-22 false signals will appear in 

1000 three-element samples. ARL=47, that is, to detect the process deregulation, an average of 

47 three-element samples should be taken. 
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On the other hand, log-normal distribution appear as follows: 

▪ Mean chart 𝑿̅: α=0.0157, which means that approximately 15-16 false signals will appear in 

1000 three-element samples. ARL = 64, that is, to detect dysregulation of the process, an average 

of 64 three-element samples should be taken. 
▪ Range chart R: α=0.0058, which means that approximately 5-6 false signals will appear in 

1000 three-element samples. ARL=172, that is, to detect the process deregulation, an average 

of 172 three-element samples should be taken. 

In addition, the presented analysis showed that the chart determined using the skewness correction 

method, in this particular case, works better for the data described by the gamma or log-normal 

distribution. This, in turn, may suggest that appropriate distribution was selected for the presented data, 

thanks to which it is possible to determine the course and nature of the process, which is important from 

the point of view of its further analysis, e.g. in terms of the process capability. 
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