VECTOR-BORNE PATHOGENS-TESTING IN A ROMANIAN CANINE BLOOD BANK

Teodor-Stefan Ionescu¹, Sinziana Radulescu², Ruxandra Florea³, Stelian Baraitareanu⁴, Doina Danes⁵

Abstract:

INTRODUCTION: Canine blood banking in veterinary medicine is an expanding market. Once the demand for blood products increased all over the world, canine blood banks have focused attention on the risk of spreading diseases through blood transfused products. The need to preserve a healthy donor-pool, free of blood-borne infectious diseases, mainly in endemic areas, led to the implementation of appropriate protocols for screening canine blood donors using specific tests.

OBJECTIVES: The aim of this study was to evaluate the presence of *Anaplasma phagocytophilum*/*Anaplasmaplatys*, *Ehrlichiacanis/Ehrlichiaewingii*, *Dirofilariaimmitis* and *Borrelia burgdorferi* using the enzyme immunoassay technology (EIA) among the donors of a Romanian canine blood bank, from January 2015 to December 2016.

METHODS: Blood samples from 575 donors were collected and 1253 tests were performed with SNAP 4DX Plus® (IDEXX Laboratories, Fremont, CA) to reveal the presence of *D. immitis* antigens and the antibodies toward *A. phagocytophilum* and/or *A. platys*, *E. canis* and/or *E. ewingii* and *B. burgdorferi*.

RESULTS: The results of this holistic approach show that all blood samples provided negative results for *B. burgdorferi* and *E. canis/E. ewingii* (0/1253), while 0.87% (11/1253) samples provided positive results for *A. phagocytophilum/A. platys* and 6.94% (87/1253) for *D. immitis*.

CONCLUSION: The next studied topic would be to compare the results provided by the EIA technology with results of real time PCR and qPCR regarding these vector-borne pathogens.

UDC Classification: 616.9; DOI: http://dx.doi.org/10.12955/cbup.v6.1269

Keywords: blood transfusion; canine blood bank; vector-borne disease.

Introduction

Over time, the approach of blood banking (BB) and transfusional medicine has evolved from an empirically and rare procedure, to a modern and currently available treatment (Greenwalt, 1997; Yagi & Bean, 2016). This trend has been closely connected to the evolution of blood bank equipment and diagnostic methods, making blood transfusions (BT) much safer (Wardrop, 2016). However, several risks are still present, related either to the donor, or to the recipient dogs (Yagi & Bean, 2016). In order to keep the donors and recipients safe, it is mandatory to fulfil a rigorous protocol for the donor selection. In this respect, Yagi & Bean (2016) recommended the criteria listed below for the selection of donors: age, weight, physical examination, behaviour, history of previously involvement in BT and other medication, preventive medication, haematological and biochemical blood analyses, blood type, infectious diseases screening, and the owner’s attitude. Considering the above mentioned criteria, all blood donors should be tested for various blood-borne pathogens which can potentially cause diseases in the recipient (Wardrop, 2016).

Once canine BT became a routine procedure, there was a need to study the potential for transmission of infectious and parasitic diseases (Freeman, 1994; Owens, 2001; Stegeman, 2003; Reine, 2004; Wardrop, 2016). Canine blood banks need to implement programs of pre-emptive identification and screening of healthy blood donors (Wardrop et al., 2016), and, in this respect, it is mandatory to maintain an up-to-dated registry of donors. The design of an appropriate time table for donors’ screening is difficult; some authors propose a full screening test on the first presentation and then re-testing at three-month interval. For all subjects agreed in the blood donation programs, Reine (2004) proposed monthly ectoparasite prophylaxis, to limit exposure to vectors of concerned disease and the

¹Faculty of Veterinary Medicine, University of Agronomic Science and Veterinary Medicine of Bucharest, Romania; ionescuteodorstefan@gmail.com
²Hemopet Blood Bank, Bucharest, Romania; sinziana.maria.radulescu@gmail.com
³Hemopet Blood Bank, Bucharest, Romania; florea.ruxandramaria@gmail.com
⁴Faculty of Veterinary Medicine, University of Agronomic Science and Veterinary Medicine of Bucharest, Romania; doruvel@gmail.com
⁵Faculty of Veterinary Medicine, University of Agronomic Science and Veterinary Medicine of Bucharest, Romania; danes.doina@gmail.com
correlation of the infectious diseases diagnostic tests used by the blood bank with the recent travel history of the donors. Blood-borne pathogens which can potentially cause diseases in the recipient could have geographic restrictions or breed predilection (Wardrop, 2016), and screening programs should also consider these factors. A physical exam is also important to be performed prior to each donation, to detect any subtle sign of infectious disease (Reine, 2004).

Vector-borne pathogen-testing, as recommended by the Consensus Statements of the American College of Veterinary Internal Medicine (ACVIM) for canine blood donors, include 23 agents but with irregular geographic distribution and risk factors (Wardrop, 2016). Also, European studies revealed erratic geographic distribution of several vector-borne pathogens, like Anaplasmaphaga gocytophilum, Anaplasma platys, Ehrlichia canis, Dirofilaria immitis and Borrelia burgdorferi, whose prevalence rates are higher in countries of southern Europe (Rizzoli et al., 2011; Vieira et al., 2014; Sainz et al., 2015; Ciucu et al., 2016).

In dogs, A. phagocytophilum and A. platys infections is causing granulocytic anaplasmosis and infectious cyclic thrombocytopenia; both can lead to chronic and persistent subclinical infections (Egenvall, 1998, 2000; Green, 2012). Also, E. canis and E. ewingii are vector-borne pathogens which can cause chronic and persistent infections (Starkey, 2015). Despite D. immitis does not meet the criteria of blood-borne pathogens which can potentially cause diseases in the recipient, because transfusion of microfilaria from an infected donor cannot cause heartworm disease in the recipient, microfilaria infected blood transfused to a recipient can potentially interfere with diagnostic testing can be a source of infection for the mosquito vectors and can carry Wolbachia spp. (Dingman, 2010). As a consequence, dogs infected with D. immitis are not considered eligible as “healthy” donors, and thus, collection of blood from them is not suitable (Wardrop, 2016). B. burgdorferi is the etiological agent of Lyme disease, a tick-borne disease which may be expressed clinically asymptomatically or chronically (Fritz, 2003). Although, the risk of acquiring Lyme disease from a transfused unit of packed red blood cells or platelets is negligible (Gerber, 1994; Ginzburg, 2013; Wardrop, 2016), the risk of infections should be considered as long the presence of B. burgdorferi may be present in the blood of donors (Straubinger, 2000; Wardrop, 2016). All these state that healthy canine blood donors should not be screened for B. burgdorferi: even more, if a multi-test screening, designed to detect more pathogens, is providing a positive result for B. burgdorferi, that animal should not be excluded from the donor pool (Zhi, 2002).

Material and Methods

Animals and blood samples

The present study included 575 dogs (Table 1) identified as potential blood donors between January 2015 and December 2016 in a Romanian canine blood bank (Hemopet Blood Bank, Bucharest, Romania), of which 82 dogs, already tested in 2015, were re-evaluated at each blood donation realized in 2016.

<table>
<thead>
<tr>
<th>Table 1: Dogs serologically evaluated by Hemopet Blood Bank.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dogs</td>
</tr>
<tr>
<td>-------</td>
</tr>
<tr>
<td>Number</td>
</tr>
<tr>
<td>%</td>
</tr>
</tbody>
</table>

Source: Author

<table>
<thead>
<tr>
<th>Table 2: Blood samples tested between January 2015 and December 2016 in Hemopet Blood Bank. All samples were tested for Dirofilaria immitis antigen and Anaplasma phagocytophilum / Anaplasma platys, Ehrlichia canis / Ehrlichia ewingii and Borrelia burgdorferi antibodies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dogs</td>
</tr>
<tr>
<td>-------</td>
</tr>
<tr>
<td>Number</td>
</tr>
<tr>
<td>%</td>
</tr>
</tbody>
</table>

Source: Author

Only 14% of all dogs donated blood in both years of study and have been tested in both years, while 86% were tested in 2015 or in 2016 (Table 1).
Over 24 months, 1253 blood samples were taken to perform serological tests (Table 2) by using a point-of-care ELISA test: SNAP 4DX Plus (IDEXX Laboratories, Fremont, CA). All dogs were tested at the time of each blood donation.

Dogs testing for Dirofilaria immitis, Anaplasma phagocytophilum/Anaplasma platys, Ehrlichia canis/Ehrlichia ewingii and Borrelia burgdorferi

The dogs were tested for heartworm disease (*D. immitis*) and tick-transmitted pathogens (*A. phagocytophilum/ A. platys, E. canis / E. ewingii and B. burgdorferi*) using SNAP 4DX Plus test (IDEXX Laboratories, Fremont, CA) according to the manufacturers’ instructions.

D. immitis infection is detected with SNAP 4DX Plus using a monoclonal antibody which binds to the target circulating antigens of *D. immitis* and a labelled polyclonal antibody against soluble antigens of *D. immitis* adult worms (Stillman, 2014).

Detection of *A. platys* antibodies is based on the cross-reactivity with the p44 protein of *A. phagocytophilum* (Zhi, 2002). For *E. ewingii* previously exposure of dogs, p28 outer membrane protein is used, an antigen proved to bind highly specific *E. ewingii* antibodies (Gusa, 2001; Zhang, 2008; O’Connor, 2010; Stillman, 2014). Presence of *E. canis* antibodies in serum samples is based on the detection of the main proteins p30 and p30-1 (Ohashi, 1998; Chandrashekar, 2010; Stillman, 2014), while for *B. burgdorferi* antibodies detection is targeting the VlsE protein-derived C6 peptide (Chandrashekar et al., 2010; Stillman, 2014).

Briefly, all blood samples, reagents and SNAP tests were kept for 30 min at room temperature (18-22°C) before being used. Four drops of enzyme-labelled conjugate are mixed with three drops of whole blood in a tube and added to the sample well of the SNAP device. The sample-conjugate mixture flows through the matrix, interacts with the test and control spots deposited on the matrix, and reaches the activation circle in approximately 30-60 seconds. The device is then activated (by depressing or “snapping” the activation), which results in the release of wash buffer and substrate solution from the reagent tank of the device.

Positive results are visualized by the formation of coloured reaction products; the assay is complete in 6-10 minutes depending on the test. The development of the colour in the positive control indicates that the assay reagents are properly working (Wild, 2013).

Results and Discussion

Between January and December 2015, 352 dogs were selected as potential donor donors, but only 302 were included in the blood donor registry, while 50 were excluded due to the positive results of the performed immunological tests (46 dogs with *Dirofilaria immitis* Ag, and 4 dogs with *A. phagocytophilum/A. platys* Ab) (Table 3).

Throughout 2016, the Blood Bank team selected 223 new dogs as potential donors, and only 188 were included in the blood donor register, while 35 dogs were excluded due to the positive results of the performed immunological tests (33 dogs with *Dirofilaria immitis* Ag, and 2 dogs with *A. phagocytophilum/A. platys* Ab).

Interestingly, of the 302 donors registered in 2015, only 27.15% (n=82) were maintained as donors during the year 2016, while 72.85% were not found on the donors’ group, even if their status in the donor registry was maintained (Table 1).

During the year 2016, only 82 blood donors from the previous year were included in Donors Registry and have donated blood, and five were removed from the blood bank due to the positive results of the immunological tests performed in 2016 (2 dogs with *Dirofilaria immitis* Ag, and 3 dogs with *A. phagocytophilum/A. platys* Ab) (Table 4).

Despite several Romanian reports concerning the circulation of *Ehrlichia canis* and *B. burgdorferi* in dogs (Kiss et al, 2011; Mircean et al, 2012; Morar et al, 2015; Enache & Coprean, 2015) and in tick-vectors (Vladimirescu et al, 2016), in our study non *Ehrlichia* and *Borrelia* species were detected in the samples from the evaluated dogs in 2015 and 2016. Our data supports the negative results of Andersson et al. (2017) in Romanians canine blood samples collected during 2013 and 2014, in Snagov (Iflov County), a village located in the same region of the dogs tested in this study.
Table 3: Blood samples tested between January 2015 and December 2016 in Hemopet Blood Bank

<table>
<thead>
<tr>
<th>Vector-borne pathogen</th>
<th>2015</th>
<th>2016</th>
<th>2015-2016</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Negative</td>
<td>Positive</td>
<td>Total</td>
</tr>
<tr>
<td>Dirofilaria immitis antigen</td>
<td>597</td>
<td>50</td>
<td>647</td>
</tr>
<tr>
<td>A. phagocytophilum / A. platys antibodies</td>
<td>640</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>E. ewingii / E. canis antibodies</td>
<td>647</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>B. burgdorferi antibodies</td>
<td>647</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Source: Authors

Table 4: History of blood harvests and immunological tests performed in the blood donors included in the Donor Registry which later became positive

<table>
<thead>
<tr>
<th>No.</th>
<th>Breed</th>
<th>Gender</th>
<th>Age (years)</th>
<th>Location</th>
<th>Habitat</th>
<th>Occupation</th>
<th>Freedom of movement</th>
<th>Exposure to vectors</th>
<th>Immunological testing</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Malinois</td>
<td>Male</td>
<td>4</td>
<td>Crevedia, Dambovita</td>
<td>Rural</td>
<td>Guard</td>
<td>Yes</td>
<td>Yes</td>
<td>Jan 06, 2015 –</td>
</tr>
<tr>
<td>2</td>
<td>Malinois</td>
<td>Male</td>
<td>4</td>
<td>Unknown</td>
<td>Unknown</td>
<td>Guard</td>
<td>Yes</td>
<td>Yes</td>
<td>Mar 06, 2015 –</td>
</tr>
<tr>
<td>3</td>
<td>Golden retriever</td>
<td>Female</td>
<td>4</td>
<td>Bucharest</td>
<td>Urban</td>
<td>Companion</td>
<td>Yes</td>
<td>Yes</td>
<td>Apr 06, 2015 D+</td>
</tr>
<tr>
<td>4</td>
<td>Golden retriever</td>
<td>Male</td>
<td>2</td>
<td>Bucharest</td>
<td>Urban</td>
<td>Companion</td>
<td>Yes</td>
<td>Yes</td>
<td>Jan 11, 2015 D+</td>
</tr>
<tr>
<td>5</td>
<td>Crossbreed</td>
<td>Male</td>
<td>4</td>
<td>Braila</td>
<td>Rural</td>
<td>Stray</td>
<td>No</td>
<td>Unknown</td>
<td>Aug 18, 2015 D+</td>
</tr>
<tr>
<td>6</td>
<td>German shepherd dog</td>
<td>Male</td>
<td>3</td>
<td>Crevedia, Dambovita</td>
<td>Rural</td>
<td>Companion</td>
<td>Yes</td>
<td>Yes</td>
<td>Sept 18, 2015 D+</td>
</tr>
<tr>
<td>7</td>
<td>German shepherd dog</td>
<td>Female</td>
<td>2</td>
<td>Crevedia, Dambovita</td>
<td>Rural</td>
<td>Companion</td>
<td>Yes</td>
<td>Yes</td>
<td>Oct 07, 2015 –</td>
</tr>
<tr>
<td>8</td>
<td>German shepherd dog</td>
<td>Female</td>
<td>2</td>
<td>Crevedia, Dambovita</td>
<td>Rural</td>
<td>Companion</td>
<td>Yes</td>
<td>Yes</td>
<td>Nov 09, 2015 –</td>
</tr>
<tr>
<td>9</td>
<td>Boxer</td>
<td>Female</td>
<td>3</td>
<td>Unknown</td>
<td>Unknown</td>
<td>Companion</td>
<td>Yes</td>
<td>Yes</td>
<td>Feb 03, 2016 –</td>
</tr>
<tr>
<td>10</td>
<td>Romanian mioritic shepherd dog</td>
<td>Female</td>
<td>10</td>
<td>Campulung, Arges</td>
<td>Rural</td>
<td>Shepherd</td>
<td>Yes</td>
<td>Yes</td>
<td>Jan 08, 2015 –</td>
</tr>
<tr>
<td>11</td>
<td>Romanian mioritic shepherd dog</td>
<td>Female</td>
<td>2</td>
<td>Campulung, Arges</td>
<td>Rural</td>
<td>Shepherd</td>
<td>Yes</td>
<td>Yes</td>
<td>Mar 10, 2016 –</td>
</tr>
<tr>
<td>12</td>
<td>Romanian mioritic shepherd dog</td>
<td>Female</td>
<td>2</td>
<td>Campulung, Arges</td>
<td>Rural</td>
<td>Shepherd</td>
<td>Yes</td>
<td>Yes</td>
<td>Apr 21, 2016 –</td>
</tr>
<tr>
<td>13</td>
<td>American Staffordshire terrier</td>
<td>Female</td>
<td>4</td>
<td>Tartasesti, Dambovita</td>
<td>Rural</td>
<td>Companion</td>
<td>Yes</td>
<td>Yes</td>
<td>May 27, 2016 A+</td>
</tr>
</tbody>
</table>

Source: Authors

Dirofilaria immitis positive dogs study

Positive tests results for *D. immitis* were recorded in 87/1253 samples (Table 3) collected from 575 dogs (Table 1) over a period of 24 months (2015-2016). In 2015, there were recorded 50 positive results in 352 dogs selected as potential donors, while in 2016 there were 37 positive results in 305 dogs (223 new dogs were selected as potential donors and 82 dogs were maintained as donors of the previous year) (Figure 1).
In the group of dogs tested before their first blood donation (Figure 2), the highest prevalence of the positive results was recorded in 2015: 58.22% (46/79). However, if it is related to dogs tested before their first blood donation yearly, the prevalence of positive results was higher in 2015 than in 2016: 14.79% (33/223) and 13.06% (46/352), respectively.

Only eight positive cases were recorded in the group of the dogs retested after their first donation (dogs included in the registry of donors who donated several times during 2015 and 2016): 1.32% (4/302) positive animals were recorded in 2015, and 1.48% (4/270) in 2016 (Figure 3).

The results of *D. immitis* antigen detection highlights the necessity of continuously testing for this pathogen in all blood donors and supports the previously epidemiological studies concerning the prevalence of *D. immitis* in Southern (Mircean et al, 2012) and central East (Ciucă et al, 2016) regions of country.

A. phagocytophilum/A. platys positive dogs study

Seropositivity to *A. phagocytophilum/A. platys* was the second main cause of non-acceptance / rejection in the register of dog donors. Positive tests results were recorded in 11/1253 samples (Table 3) collected from 575 dogs (Table 1) over a period of 24 months (2015-2016). While 7 tests were positive in 2015 and in 2016 the number decreased to only 4 positive tests (Figure 4).
Dogs tested before their first blood donation provided 1.13% (4/352) positive results in 2015, and 0.89% (2/223) in 2016 (Figure 5).

In the group of dogs tested before their first blood donation, the positive results recorded in 2015 (n=4) were higher than in 2016 (n=2). In the group of the dogs retested after their first donation, there were five positive results: 0.66% (2/302) positive animals were recorded in 2015, and 1.11% (3/270) in 2016 (Figure 6).

Positive results obtained in all groups of donors and in both years of study recommend the necessity of \textit{A. phagocytophilum/A. platys} continuous testing of donor pool, and this recommendation is also supported by epidemiologically studies performed in Romania that proved the risk of granulocytic anaplasmosis mainly in Central and Southern Romania, with a greater risk in the Southern lowland region (Matei et al, 2017), and clustered foci in southern regions and in the western part of the country (Mircean et al, 2012).

As it was stated by Kidd (2003), ideally all dogs should be screened for \textit{D. immitis}, \textit{A. phagocytophilum/A. platys}, \textit{E. canis/E. ewingii} and \textit{B. Burgdorferi}. Canine blood donors should be treated with ectoparasite prophylaxis to minimize exposure to potential vectors. The prophylaxis medicine should be chosen with deep caution, because diseases transmission typically takes at least 24 to 72 hours of tick blood feeding (Kidd, 2003).

Conclusion

Canine blood donor screening for \textit{Dirofilaria immitis} antigen revealed 14.20% (50/352) positive animals in 2015 and 12.13% (37/305) in 2016. The prevalence of infected dogs retested after their first donation (already included in the Donor Registry) was quite low relative to the number of blood
donors [1.32% (4/302) in 2015, and 1.48% (4/270) in 2016]. The prevalence of infected dogs tested before their first blood donation (not included in the Donor Registry) was quite high relative to the number of the selected potential blood donors [13.06% (46/352) in 2015, and 14.79% (33/223) in 2016]. The screening for *A. phagocytophilum/A. platys* antibodies revealed positive results: 1.70% (6/352) in 2015, and 1.63% (5/305) in 2016. Both groups of tested dogs (already included and not included in the Donor Registry) reveal low prevalence of infected dogs. Only 1.13% (4/352) in 2015, and 0.89% (2/223) in 2016 of dogs already included in the Donor Registry were *A. phagocytophilum/A. platys* positives (antibodies), and 0.66% (2/302) in 2015, and 1.11% (3/270) in 2016 of dogs not included in the Donor Registry were positives. None of the 575 dogs evaluated by the 1253 immunological tests, performed over 24 months (2015-2016), provided positive results for *E. ewingii*/*E. canis* antibodies and *B. burgdorferi* antibodies.

References

Green, J. K. (2012). *Infectious diseases of dog and cat, 4th ed.* St. Louis, SUA

burgdorferi sensu lato, and Ehrlichia canis) in dogs from Romania. Vector Borne Zoonotic Dis, 12(7), 595-604. doi: 10.1186/s13701-017-2092-x

