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GEOMETRY OF FUNCTIONS IN ECONOMICS

(APPLICATION OF CARTAN’S MOVING FRAME METHOD)
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ABSTRACT

Our principal object of study is the geometry of special sub-
manifolds of R3. The method we are going to use was in-
vented by Darboux and brought to perfection by Cartan. On
a Riemannian manifold (MM, (,)) we define an orthonormal
moving frame (X1,...,X,) such that (Xi(p),..., Xn(p)
is an orthonormal frame for tangent space M,. The aim of
this article is to give geometrical analysis of a special type
of Cobb-Douglas surface, especially the formula of Gauss
curvature
v(x,y) = (z,y, Az®yP),

where
A=1,z2>0,y>0, a=lora=2and 8 =1.

For this purpose we use the Cartan’s moving frame method.
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INTRODUCTION

LetU c RZand z : U — R3 is a map. We say that this map
is regular if the Jacobian matrix J(z)(u, v) has rank 2 for all
(u,v) € U. Letus suppose that for every pointp € M C R3
exist an open set U C R?, anopensetV C R3, p € V, and
a regular differentiable homeomorphism =z : U — V N M.
A subset M C R? is called a two-dimensional regular sur-
face in R3. Let 2(U) C V. N M C R? be a neighbour-
hood of p € M such that the restriction z|U is an differ-
entiable homeomorphism into 2(U) € V N M and that it
is possible to choose in z(U) an orthonormal moving frame
{Eh1, E2, E3} insuch a way that £y, E» are tangent to z(U)
and Es is a non-vanishing normal to 2(U). We first discuss
the Cartan structural equations for a two-dimensional sur-
face in R3.

Structural Equations

We first discuss the Cartan structural equations for a two-
dimensional surface in R3. Differentiating a patch z(u,v)
we obtain

dx = zydu + xydv, (1)

where z,,, z, are tangent vector fields. Let us denote
n(u,v) = Ty X Ty

the normal vector field. With respect to the orthonormal
moving frame { E1, 2, E3} we define forms

0; = E;de = E;xydu + E;x,dv, 1 =1,2,3.
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Since z,, and z,, are tangent to (U) we have E3 - dz = 0
which implies 63 = 0. So we have

01 = Frzydu + Eyxydo,
0o = FEoxydu + Esxydu.

Each vector E; : U C R?® — R3 is a differentiable map and
the differential
dE; : R® —» R3
is a linear map. So we may write (using Einstein’s notation)
dEi = Wij Ej

where w;; are linear forms on R and since E; are differen-
tiable, w;; are 9 differentiable forms. So we have

dE] = w11 By + wi2F2 + wi3E3,

dE2 = wa1 Eq 4 waa Ea + wa3 Es, (2

dE3 = w31 E1 + w32 F2 + w33 B3.
Differentiating the equation E; - E; = d;;, where §;; is the
Kronecker's symbol, we obtain

dE;E; + E;dE; = wij +wj; = 0.
Forms w;; are antisymmetric

wii =0, wij = —wji. @)

From (2) and (3) we have

dE; = wi2B2 + w13 ks,

dEy = —w12E1 + wa3 B3, 4)

dE3 = —w13E1 — wasEa.

Forms dx and dE; have vanishing exterior derivatives,
which implies

0=d?c =dE; A0y + E1dfy + dEs A O + Eadfs.  (5)
Substituting (4) into (5) we obtain

(w12B2 + w13E3) A 61 + E1df1+ ©)
+ (w21 E1 + w23 E3) A2 + Eadf> = 0.

From (6) there immediately follows
(d01 4+ w21 A 92)E1+
+(d92 + wiz2 A 91)E2+ (7)
+(wiz A b1 +waz AbB2)E3 =0

The linear independence of vectors E;, F2, E3 and equa-
tion (7) gives the following equations:

do, = w12 A 02, (8)
dfs = wa1 A 91, (9)
0 =wiz A1+ woz Abs. (10)
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Differentiating (4) gives: Orthonormal frame is
1
0=d?E1 = dw12B2 — w12 A dE2 + dw13E3 — w13 A dEs, B = ——(1,0,v),
L= Ty )
dwi2 B2 — w1z A (w21 E1 + we3 B3)+ 1 5
By = (—uv, 14 v*,u),
+dwizE3 — w13 A (w31 Bl + w32 E2) = 0, V1402 V1 +u2 +02
(dwi2 — w13 A w3zz)FEa+ Es = ;(—v —u, 1).
(11) VitaZtoz
+(dwiz — w12 Awag)E3 = 0.
From (11) we have From (1) follows
uv
_ 01 = V1+v2du+ —— dv, (18)
ZUJIQ = w13 2(032, (12) V142
w13 = w12 N\ w23. V1I+uZ+o2
0y = % dv. (19)
Analogically: v
Further we have
d2E2 = dwo1F1 — wo1 ANdE1+ 1
+dwo3 E3 — wa3 N dEs =0, dE; = - 50, = | dv,
(1+v2)3 7 (1+02)3
dwa1 F1 — w21 A (wi2E2 + wisE3)+ - w J
+dwaz B3 — was A (w31 E1 + w2 Blz) = 0, R o e i
(dwaz — w21 Awiz)E3+ (13) Analogically we have
+(dw21 — w2z Aws1)Er = 0. 1
w13 =dEy - B3 = dv
From (13) we have V1402V +u? + 02
duns = way A wis. (14) Further we have
. V1+ 02
Equations (8), (9), (10), (12) and (14) are called Maurer- Ouby = ——————5 - (—v,—u, 1),
Cartan structural equations. From equation (1)0 and Car- (1+u? +02)2
tan’s lemma we have 1
OvEo = NS 2 N (E%mEnggv)v
w13 = a1101 + 1202, (15) (1+v2)2 - (1+u?+02)2
w23 = a1201 + a220s. where
From (15) and (12) we have El, = —u(l+v%)(1 +u?) + uw?(1 4+ u? +0?),
2 _ 2 2
dwiz = w13 Awsa = B3y =uwv(l+v7),
= —w13 N woz = (16) ESU = —-uv [(1+u2+v2)+(1+v2)] .
= —(a1101 + a1202) A (1201 + a2202). 5 VIF o2
b - B3 = —————,
Equation (16) gives L+u? + 02
OvEs - B3 = Uy
dwlz:—(04110(22—04%2)91/\92:—K91/\92, (17) v 2 3= ~/1+v2(1+u2+v2)7
where K = ajiaz2 — o2, is the Gaussian curvature. and
Differentiating the equation E3 - E5 = 1 we have wo3z =dFEs - B3 =
Nl
dBs - B3 =0, = VIEV uw dv
1+ u? 4 02 VI 02(1 4 u? + v2)
which means that dFs is a tangent vector, i.e. » . .
dBs € T,(M). The mapping Summarizing previous results we obtain:
u
OE: OFE: w12 = —w21 = dv,
W (azy + Bxy) = —a=2 —,3—3 12 2 (1 +v2)V1+u2 +02
ou ov
1
is a linear mappin w13 = —w31 = v,
PRing 18 3 V1+02V1+u2 +02
W : T (M) — Tp(M). i
] ) w23 = —w3p = ————— du—
Example 1: Let z(u,v) = (u,v,u - v) be a parametrized 14w+
utility surface in R3. We are going to construct Gaussian - uv dv
and Mean curvature. VIFoZ(1+u? +02)
Moving frame is wv
01 =V1+v2du+ ——— dv,
xu:(l,O,v), ‘/1+U2
Z‘UZ(O,].,U), 0 _1/1+u2+v2d
no = (—v,—u,l). T \/1+U2 v

www.researchjournals.co.uk 2



GEOMETRY OF FUNCTIONS IN ECONOMICS (APPLICATION OF CARTAN'S MOVING FRAME METHOD)

From equations (18) and (19) follows

u

dfy =0, dipg = ————du A dv
! ? V14021 + u20?
and
01 N Os =1+ u2v2du A dv. (20)
From (12) we have
1
dwi2 = wi3 A w3z = —% du N dv.
(1+u2+v2)2
Thanks to (20) we have
1
du N dv = ———————601 N b
VIt fo?
d ! 01 N 6
Wiy = ———————— .
12 1+ 2 +02)2 1 2
From (17) immediately follows that
1
K=——-——— (21)

(1 +u? 4 v2)2’
which means that every point of studied surface is hyper-
bolic.
The Weingarten map gives

W(Zu) = -0,F3, and W(mv) = —0yE3,

where

1

OuB3 = ——————— (uv, —v? — 1, —u),

(1+u2+02)2
1 2

B3 = —————(-1—-u
(1+u2+02)2

, UV, —V).

From the fact W : T}, (M) — T, (M) follows

OuE3 = B1124 + 1220,

(22)
Oy E3 = B21Ty + Ba2Ty.

After a short calculation we obtain

uv
pin=——"—"3,
(1+u?+02)2
Big = 1402
2=-——7 ,
(1+u? +v2)%
3 14+ u?
2l =——— 3,
(1+u? +v2)%
uv
P22 =

a (1+u2+v2)%'

From equations (22) follows that the mapping W can be de-
scribed by the matrix

W= 1 (—uv 1+v2)
(w2 4e2)i \IHut v )
Determinant
o 1 —uv  1+0%\
oW =K = et () =
1

(14 u2 +02)2’

www.researchjournals.co.uk

as was given in (20) and the formula for mean curvature is
uv

1
H=-trW=—-————.
2 (1+u2+v2)§

Example 2. Let z(u,v) = (u,v,u?v) be other parameter-

ized utility surface in R?. Moving frame is

zu = (1,0, 2uv),
Ty = (O,l,uz)7

n = (—2uv, —u?,1).

Orthonormal frame is

1
Fy =———,(1,0,2uv),
! V1 + 4u20? ( )
_ 9.3 2,2 2
By — (—2u’v,1 + 4du®v®,u*) (23)
V14 4u202V1 + 4u202 + ut
1
B3 =———————(—2uv, —u2, 1).
V1 4+ 4u20? 4 ut
Further we have
1
dE1 = Oy Erdu + Oy Er1dv = —_—
(1 + 4u2v2)2
. [(—4u1}2,07 211) du + (—4u2v, 0, 2u) dv] .
After a short calculation we obtain
2uvdu + 2udd
wis — dEy - By — (2u?vdu + 2u’dv) .
(1 4 4u202)V1 + 4u202 + u?
Analogically
(2vdu + 2udv)
w13 =dFEy - B3 = .
18 s V14 4u202/1 + 4u20? + ot
From (23) follows
dE3 = (0uE3)du + (0v E3)dv.
After a short calculation we obtain
—4udv? — 2u) du + dutvdo
w32:dE3.E2:|:( u-v ’lt) U u-v }
V14 4u?0? (1 + 4u?v? + u?)
Summarizing the previous results we obtain
2u2vdu + 2udv
w = — W = s
' 2 (1 + 4u20v2)V1 + 4u?v? + ut
2udu + 2udv
w = —Ww = s
13 3 V14 442021 + 4u20? + o
(4uv? 4 2u) du — dutvdv
w23 = — w32 = )
V14 4u?v? (1 + 4u?v? + ut)
The forms 6, and 62 are
2u3v
01 = 1+ 4u2v2du + —v—dv,
! V14 4u202 (24)
V1 Au202 4
02:—+ uvt tu dv.

V1 4+ 4u2v



GEOMETRY OF FUNCTIONS IN ECONOMICS (APPLICATION OF CARTAN’'S MOVING FRAME METHOD)
From equations (16) and (24) we obtain

Au?
dwiz = w1z A waz = %du/\dv =
(14 4u202 +ut)2
4u?
NN
(1 + 4u2v2 4 ut)2 LT

from which follows that the Gaussian curvature has the form

K — _L_
(1 + 4u?v? + ut)?

Conclusion

Two economical examples served as an illustration of
Maurer-Cartan equations and we reached the following re-
sults:

1. The Gaussian and mean curvatures of the first sur-
face are
. 1
- (1 +u? 4 02)2’
1
H= ttw=-—— """
2 (1 + u2 +U2)§

2. The Gaussian curvature of the second surface is

4u?
(1 + 4u202 + u4)2’
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