GEOMETRY OF FUNCTIONS IN ECONOMICS (APPLICATION OF CARTAN'S MOVING FRAME METHOD)

Miloš KAŇKA1, Eva KAŇKOVÁ2

¹ College of Polytechnics, Jihlava, Czech Republic

ABSTRACT

Our principal object of study is the geometry of special submanifolds of R^3 . The method we are going to use was invented by Darboux and brought to perfection by Cartan. On a Riemannian manifold (M,\langle,\rangle) we define an orthonormal moving frame (X_1,\ldots,X_n) such that $(X_1(p),\ldots,X_n(p)$ is an orthonormal frame for tangent space M_p . The aim of this article is to give geometrical analysis of a special type of Cobb-Douglas surface, especially the formula of Gauss curvature

$$\gamma(x,y) = (x, y, Ax^{\alpha}y^{\beta}),$$

where

$$A=1, \ x>0, \ y>0, \ \alpha=1 \text{ or } \alpha=2 \text{ and } \beta=1.$$

For this purpose we use the Cartan's moving frame method.

JEL CLASSIFICATION & KEYWORDS

■ C00 ■ EXTERIOR PRODUCT ■ EXTERIOR DIFFER-ENTIATION ■ MAURER-CARTAN STRUCTURAL EQUA-TIONS ■ GAUSSIAN CURVATURE ■ ORTHONORMAL MOVING FRAME ■ PARAMETRIZED UTILITY SURFACE ■ WEINGARTEN MAP ■

INTRODUCTION

Let $U\subset\mathbb{R}^2$ and $x:U\to\mathbb{R}^3$ is a map. We say that this map is regular if the Jacobian matrix J(x)(u,v) has rank 2 for all $(u,v)\in U$. Let us suppose that for every point $p\in M\subset\mathbb{R}^3$ exist an open set $U\subset\mathbb{R}^2$, an open set $V\subset\mathbb{R}^3$, $p\in V$, and a regular differentiable homeomorphism $x:U\to V\cap M$. A subset $M\subset\mathbb{R}^3$ is called a two-dimensional regular surface in \mathbb{R}^3 . Let $x(U)\subset V\cap M\subset\mathbb{R}^3$ be a neighbourhood of $p\in M$ such that the restriction x|U is an differentiable homeomorphism into $x(U)\subset V\cap M$ and that it is possible to choose in x(U) an orthonormal moving frame $\{E_1,E_2,E_3\}$ in such a way that E_1,E_2 are tangent to x(U) and E_3 is a non-vanishing normal to x(U). We first discuss the Cartan structural equations for a two-dimensional surface in \mathbb{R}^3 .

Structural Equations

RCH JOURNAL OF ECONOMICS, BUSINESS AND I

We first discuss the Cartan structural equations for a two-dimensional surface in \mathbb{R}^3 . Differentiating a patch x(u,v) we obtain

$$dx = x_u du + x_v dv, (1)$$

where x_u, x_v are tangent vector fields. Let us denote

$$n(u,v) = x_u \times x_v$$

the normal vector field. With respect to the orthonormal moving frame $\{E_1,E_2,E_3\}$ we define forms

$$\theta_i = E_i dx = E_i x_u du + E_i x_v dv, \ i = 1, 2, 3.$$

Since x_u and x_v are tangent to x(U) we have $E_3 \cdot dx = 0$ which implies $\theta_3 = 0$. So we have

$$\theta_1 = E_1 x_u du + E_1 x_v dv,$$

$$\theta_2 = E_2 x_u du + E_2 x_v dv.$$

Each vector $E_i:U\subset\mathbb{R}^3\to\mathbb{R}^3$ is a differentiable map and the differential

$$dE_i: \mathbb{R}^3 \to \mathbb{R}^3$$

is a linear map. So we may write (using Einstein's notation)

$$dE_i = \omega_{ij} E_j$$

where ω_{ij} are linear forms on \mathbb{R}^3 and since E_i are differentiable, ω_{ij} are 9 differentiable forms. So we have

$$dE_1 = \omega_{11}E_1 + \omega_{12}E_2 + \omega_{13}E_3,$$

$$dE_2 = \omega_{21}E_1 + \omega_{22}E_2 + \omega_{23}E_3,$$

$$dE_3 = \omega_{31}E_1 + \omega_{32}E_2 + \omega_{33}E_3.$$
(2)

Differentiating the equation $E_i\cdot E_j=\delta_{ij},$ where δ_{ij} is the Kronecker's symbol, we obtain

$$dE_i E_j + E_i dE_j = \omega_{ij} + \omega_{ji} = 0.$$

Forms ω_{ij} are antisymmetric

$$\omega_{ii} = 0, \quad \omega_{ij} = -\omega_{ji}. \tag{3}$$

From (2) and (3) we have

$$dE_1 = \omega_{12}E_2 + \omega_{13}E_3,$$

$$dE_2 = -\omega_{12}E_1 + \omega_{23}E_3,$$

$$dE_3 = -\omega_{13}E_1 - \omega_{23}E_2.$$
(4)

Forms dx and dE_i have vanishing exterior derivatives, which implies

$$0 = d^2x = dE_1 \wedge \theta_1 + E_1 d\theta_1 + dE_2 \wedge \theta_2 + E_2 d\theta_2.$$
 (5)

Substituting (4) into (5) we obtain

$$(\omega_{12}E_2 + \omega_{13}E_3) \wedge \theta_1 + E_1 d\theta_1 + + (\omega_{21}E_1 + \omega_{23}E_3) \wedge \theta_2 + E_2 d\theta_2 = 0.$$
 (6)

From (6) there immediately follows

$$(d\theta_1 + \omega_{21} \wedge \theta_2)E_1 +$$

$$+(d\theta_2 + \omega_{12} \wedge \theta_1)E_2 +$$

$$+(\omega_{13} \wedge \theta_1 + \omega_{23} \wedge \theta_2)E_3 = 0$$

$$(7)$$

The linear independence of vectors E_1,E_2,E_3 and equation (7) gives the following equations:

$$d\theta_1 = \omega_{12} \wedge \theta_2,\tag{8}$$

$$d\theta_2 = \omega_{21} \wedge \theta_1, \tag{9}$$

$$0 = \omega_{13} \wedge \theta_1 + \omega_{23} \wedge \theta_2. \tag{10}$$

² University of Ecomomics in Prague, Czech Republic

Differentiating (4) gives:

$$0 = d^{2}E_{1} = d\omega_{12}E_{2} - \omega_{12} \wedge dE_{2} + d\omega_{13}E_{3} - \omega_{13} \wedge dE_{3},$$

$$d\omega_{12}E_{2} - \omega_{12} \wedge (\omega_{21}E_{1} + \omega_{23}E_{3}) +$$

$$+d\omega_{13}E_{3} - \omega_{13} \wedge (\omega_{31}E_{1} + \omega_{32}E_{2}) = 0,$$

$$(d\omega_{12} - \omega_{13} \wedge \omega_{32})E_{2} +$$

$$+(d\omega_{13} - \omega_{12} \wedge \omega_{23})E_{3} = 0.$$
(11)

From (11) we have

$$d\omega_{12} = \omega_{13} \wedge \omega_{32},$$

$$d\omega_{13} = \omega_{12} \wedge \omega_{23}.$$
(12)

Analogically:

$$d^{2}E_{2} = d\omega_{21}E_{1} - \omega_{21} \wedge dE_{1} + d\omega_{23}E_{3} - \omega_{23} \wedge dE_{3} = 0,$$

$$d\omega_{21}E_{1} - \omega_{21} \wedge (\omega_{12}E_{2} + \omega_{13}E_{3}) + d\omega_{23}E_{3} - \omega_{23} \wedge (\omega_{31}E_{1} + \omega_{32}E_{2}) = 0,$$

$$(d\omega_{23} - \omega_{21} \wedge \omega_{13})E_{3} + d\omega_{21} - \omega_{23} \wedge \omega_{31})E_{1} = 0.$$
(13)

From (13) we have

$$d\omega_{23} = \omega_{21} \wedge \omega_{13}. \tag{14}$$

Equations (8), (9), (10), (12) and (14) are called Maurer-Cartan structural equations. From equation (1)0 and Cartan's lemma we have

$$\omega_{13} = \alpha_{11}\theta_1 + \alpha_{12}\theta_2,
\omega_{23} = \alpha_{12}\theta_1 + \alpha_{22}\theta_2.$$
(15)

From (15) and (12) we have

$$d\omega_{12} = \omega_{13} \wedge \omega_{32} =$$

$$= -\omega_{13} \wedge \omega_{23} =$$

$$= -(\alpha_{11}\theta_1 + \alpha_{12}\theta_2) \wedge (\alpha_{12}\theta_1 + \alpha_{22}\theta_2).$$
(16)

Equation (16) gives

$$d\omega_{12} = -(\alpha_{11}\alpha_{22} - \alpha_{12}^2)\,\theta_1 \wedge \theta_2 = -K\theta_1 \wedge \theta_2, \quad (17)$$

where $K=\alpha_{11}\alpha_{22}-\alpha_{12}^2$ is the Gaussian curvature.

Differentiating the equation $E_3 \cdot E_3 = 1$ we have

$$dE_3 \cdot E_3 = 0$$
,

which means that dE_3 is a tangent vector, i.e. $dE_3 \in T_p(M)$. The mapping

$$W(\alpha x_u + \beta x_v) = -\alpha \frac{\partial E_3}{\partial u} - \beta \frac{\partial E_3}{\partial v}$$

is a linear mapping

$$W: T_p(M) \to T_p(M).$$

Example 1: Let $x(u,v)=(u,v,u\cdot v)$ be a parametrized utility surface in \mathbb{R}^3 . We are going to construct Gaussian and Mean curvature.

Moving frame is

$$x_u = (1, 0, v),$$

 $x_v = (0, 1, u),$
 $n = (-v, -u, 1).$

Orthonormal frame is

$$E_1 = \frac{1}{\sqrt{1+v^2}}(1,0,v),$$

$$E_2 = \frac{1}{\sqrt{1+v^2} \cdot \sqrt{1+u^2+v^2}}(-uv, 1+v^2, u),$$

$$E_3 = \frac{1}{\sqrt{1+v^2+v^2}}(-v, -u, 1).$$

From (1) follows

$$\theta_1 = \sqrt{1 + v^2} \, du + \frac{uv}{\sqrt{1 + v^2}} \, dv,\tag{18}$$

$$\theta_2 = \frac{\sqrt{1 + u^2 + v^2}}{\sqrt{1 + v^2}} \, dv. \tag{19}$$

Further we have

$$dE_1 = \left(\frac{-v}{(1+v^2)^{\frac{3}{2}}}, 0, \frac{1}{(1+v^2)^{\frac{3}{2}}}\right) dv,$$

$$\omega_{12} = dE_1 \cdot E_2 = \frac{u}{(1+v^2)\sqrt{1+v^2+v^2}} dv.$$

Analogically we have

$$\omega_{13} = dE_1 \cdot E_3 = \frac{1}{\sqrt{1 + v^2}\sqrt{1 + u^2 + v^2}} dv.$$

Further we have

$$\partial_u E_2 = \frac{\sqrt{1+v^2}}{(1+u^2+v^2)^{\frac{3}{2}}} \cdot (-v, -u, 1),$$

$$\partial_v E_2 = \frac{1}{(1+v^2)^{\frac{3}{2}} \cdot (1+u^2+v^2)^{\frac{3}{2}}} (E_{2v}^1, E_{2v}^2, E_{2v}^3),$$

where

$$\begin{split} E_{2v}^1 &= -u(1+v^2)(1+u^2) + uv^2(1+u^2+v^2), \\ E_{2v}^2 &= u^2v(1+v^2), \\ E_{2v}^3 &= -uv\left[(1+u^2+v^2) + (1+v^2)\right]. \\ \partial_u E_2 \cdot E_3 &= \frac{\sqrt{1+v^2}}{1+u^2+v^2}, \\ \partial_v E_2 \cdot E_3 &= \frac{-uv}{\sqrt{1+v^2}(1+u^2+v^2)}, \end{split}$$

and

$$\omega_{23} = dE_2 \cdot E_3 =$$

$$= \frac{\sqrt{1+v^2}}{1+u^2+v^2} du - \frac{uv}{\sqrt{1+v^2}(1+u^2+v^2)} dv.$$

Summarizing previous results we obtain:

$$\omega_{12} = -\omega_{21} = \frac{u}{(1+v^2)\sqrt{1+u^2+v^2}} dv,$$

$$\omega_{13} = -\omega_{31} = \frac{1}{\sqrt{1+v^2}\sqrt{1+u^2+v^2}} dv,$$

$$\omega_{23} = -\omega_{32} = \frac{\sqrt{1+v^2}}{1+u^2+v^2} du - \frac{uv}{\sqrt{1+v^2}(1+u^2+v^2)} dv,$$

$$\theta_1 = \sqrt{1+v^2} du + \frac{uv}{\sqrt{1+v^2}} dv,$$

$$\theta_2 = \frac{\sqrt{1+u^2+v^2}}{\sqrt{1+v^2}} dv.$$

From equations (18) and (19) follows

$$d\theta_1 = 0, \quad d\theta_2 = \frac{u}{\sqrt{1 + v^2}\sqrt{1 + u^2v^2}} du \wedge dv$$

and

$$\theta_1 \wedge \theta_2 = \sqrt{1 + u^2 v^2} \, du \wedge dv. \tag{20}$$

From (12) we have

$$d\omega_{12} = \omega_{13} \wedge \omega_{32} = \frac{1}{(1 + u^2 + v^2)^{\frac{3}{2}}} du \wedge dv.$$

Thanks to (20) we have

$$du \wedge dv = \frac{1}{\sqrt{1 + u^2 + v^2}} \theta_1 \wedge \theta_2$$

 $d\omega_{12} = \frac{1}{(1 + u^2 + v^2)^2} \theta_1 \wedge \theta_2.$

From (17) immediately follows that

$$K = -\frac{1}{(1+u^2+v^2)^2},\tag{21}$$

which means that every point of studied surface is hyperbolic.

The Weingarten map gives

$$W(x_u) = -\partial_u E_3$$
, and $W(x_v) = -\partial_v E_3$,

where

$$\partial_u E_3 = \frac{1}{(1+u^2+v^2)^{\frac{3}{2}}} (uv, -v^2-1, -u),$$

$$\partial_v E_3 = \frac{1}{(1+u^2+v^2)^{\frac{3}{2}}} (-1-u^2, uv, -v).$$

From the fact $W: T_p(M) \to T_p(M)$ follows

$$\partial_u E_3 = \beta_{11} x_u + \beta_{12} x_v,$$

$$\partial_v E_3 = \beta_{21} x_u + \beta_{22} x_v.$$
(22)

After a short calculation we obtain

$$\beta_{11} = \frac{uv}{(1+u^2+v^2)^{\frac{3}{2}}},$$

$$\beta_{12} = -\frac{1+v^2}{(1+u^2+v^2)^{\frac{3}{2}}},$$

$$\beta_{21} = -\frac{1+u^2}{(1+u^2+v^2)^{\frac{3}{2}}},$$

$$\beta_{22} = \frac{uv}{(1+u^2+v^2)^{\frac{3}{2}}}.$$

From equations (22) follows that the mapping ${\cal W}$ can be described by the matrix

$$W = \frac{1}{(1+u^2+v^2)^{\frac{3}{2}}} \begin{pmatrix} -uv & 1+v^2 \\ 1+u^2 & -uv \end{pmatrix}.$$

Determinant

$$\begin{split} \det W &= K = \frac{1}{(1+u^2+v^2)^3} \mathrm{det} \, \begin{pmatrix} -uv & 1+v^2 \\ 1+u^2 & -uv \end{pmatrix} = \\ &= -\frac{1}{(1+u^2+v^2)^2}, \end{split}$$

as was given in (20) and the formula for mean curvature is

$$H = \frac{1}{2}trW = -\frac{uv}{(1+u^2+v^2)^{\frac{3}{2}}}.$$

Example 2. Let $x(u,v)=(u,v,u^2v)$ be other parameterized utility surface in \mathbb{R}^3 . Moving frame is

$$x_u = (1, 0, 2uv),$$

 $x_v = (0, 1, u^2),$
 $n = (-2uv, -u^2, 1).$

Orthonormal frame is

$$E_{1} = \frac{1}{\sqrt{1 + 4u^{2}v^{2}}}, (1, 0, 2uv),$$

$$E_{2} = \frac{(-2u^{3}v, 1 + 4u^{2}v^{2}, u^{2})}{\sqrt{1 + 4u^{2}v^{2}}\sqrt{1 + 4u^{2}v^{2} + u^{4}}}$$

$$E_{3} = \frac{1}{\sqrt{1 + 4u^{2}v^{2} + u^{4}}}(-2uv, -u^{2}, 1).$$
(23)

Further we have

$$dE_1 = \partial_u E_1 du + \partial_v E_1 dv = \frac{1}{(1 + 4u^2 v^2)^{\frac{3}{2}}} \cdot \left[(-4uv^2, 0, 2v) du + (-4u^2 v, 0, 2u) dv \right].$$

After a short calculation we obtain

$$\omega_{12} = dE_1 \cdot E_2 = \frac{(2u^2vdu + 2u^3dv)}{(1 + 4u^2v^2)\sqrt{1 + 4u^2v^2 + u^4}}.$$

Analogically

$$\omega_{13} = dE_1 \cdot E_3 = \frac{(2vdu + 2udv)}{\sqrt{1 + 4u^2v^2}\sqrt{1 + 4u^2v^2 + u^4}}.$$

From (23) follows

$$dE_3 = (\partial_u E_3)du + (\partial_v E_3)dv.$$

After a short calculation we obtain

$$\omega_{32} = dE_3 \cdot E_2 = \frac{\left[\left(-4u^3v^2 - 2u \right) du + 4u^4v dv \right]}{\sqrt{1 + 4u^2v^2} (1 + 4u^2v^2 + u^4)}.$$

Summarizing the previous results we obtain

$$\omega_{12} = -\omega_{21} = \frac{2u^2vdu + 2u^3dv}{(1 + 4u^2v^2)\sqrt{1 + 4u^2v^2 + u^4}},$$

$$\omega_{13} = -\omega_{31} = \frac{2vdu + 2udv}{\sqrt{1 + 4u^2v^2}\sqrt{1 + 4u^2v^2 + u^4}},$$

$$\omega_{23} = -\omega_{32} = \frac{(4u^3v^2 + 2u)du - 4u^4vdv}{\sqrt{1 + 4u^2v^2}(1 + 4u^2v^2 + u^4)},$$

The forms θ_1 and θ_2 are

$$\theta_1 = \sqrt{1 + 4u^2v^2}du + \frac{2u^3v}{\sqrt{1 + 4u^2v^2}}dv,$$

$$\theta_2 = \frac{\sqrt{1 + 4u^2v^2 + u^4}}{\sqrt{1 + 4u^2v}}dv.$$
(24)

From equations (16) and (24) we obtain

$$d\omega_{12} = \omega_{13} \wedge \omega_{32} = \frac{4u^2}{(1 + 4u^2v^2 + u^4)^{\frac{3}{2}}} du \wedge dv =$$
$$= \frac{4u^2}{(1 + 4u^2v^2 + u^4)^2} \theta_1 \wedge \theta_2,$$

from which follows that the Gaussian curvature has the form

$$K = -\frac{4u^2}{(1 + 4u^2v^2 + u^4)^2}.$$

Conclusion

Two economical examples served as an illustration of Maurer-Cartan equations and we reached the following results:

The Gaussian and mean curvatures of the first surface are

$$\begin{split} K &= -\frac{1}{(1+u^2+v^2)^2}, \\ H &= \frac{1}{2} \text{tr} W = -\frac{uv}{(1+u^2+v^2)^{\frac{3}{2}}}. \end{split}$$

2. The Gaussian curvature of the second surface is

$$K = -\frac{4u^2}{(1+4u^2v^2+u^4)^2}.$$

References

Bureš, J., Kaňka, M., 1994, "Some conditions for a surface in E^4 to be a part of the sphere S^2 ", Mathematica Bohemica No. 4, pp. 367–371

Kaňka, M., 1995, "An example of basic structure equations for Riemannian Manifolds", Mundus Symbolicus 1995, 57–62

Cartan, É., 1952, "Oeuvres complètes – Partie I.", Gauthier-Villars, vol. 2

Cartan, É., 1953, "Oeuvres complètes – Partie II.", Gauthier-Villars, vol. 1

Cartan, É., 1953, "Oeuvres complètes – Partie II.", Gauthier-Villars, vol. 2

Cartan, É., 1955, "Oeuvres complètes – Partie III.", Gauthier-Villars, vol. 1

Cartan, É., 1955, "Oeuvres complètes – Partie III.", Gauthier-Villars, vol. 2

Sternberg, S., 1964, "Lectures on Differential Geometry", Prentice-Hall. INC.

Kobayashi, S., Nomizu, K., 1963, "Foundations of differential geometry", New York

Nomizu, K., 1956, "Lie groups and differential geometry", The mathematical society of Japan

Spivak, M., 1979, "Differential geometry", Berkeley