VaR BASED RISK MANAGEMENT

Mária Bohdalová, Michal Greguš

Abstract


In this paper we discuss the Value–at–Risk concept and we analyse the market risk by using EWMA approach. EWMA (exponentially weighted moving average) forecasting technique is a popular measure of various risks in financial risk management. We will compare standard EWMA, robust EWMA and skewed EWMA forecast of VaR. JP Morgan standard EWMA is derived from Gaussian distribution. Robust EWMA is based on Laplace distribution and skewed EWMA is a new approach derived from an asymmetric Laplace distribution. Asymmetric Laplace distribution takes into account both skewness and heavy tails in return distribution and the time varying nature of them in practice. Skewed EWMA VaR is a generalization of the standard EWMA method. Using these approaches we will analyse selected financial series (three European market indexes and one exchange rate). We have found andconfirmed that skewed EWMA forecasting of VaR outperforms the standard EWMA method.


Full Text:

PDF

References


Ahlawat, S. (2012). Calculating Value-at-Risk Using Option Implied Probability Distribution of Asset Price. Wilmott, 59, 56–61. http://dx.doi.org/10.1002/wilm.10113

Alexander, C. (2008). Market Risk Analysis. Chichester, England: John Wiley & Sons.

Allen, S. (2003). Financial risk management. A practitioner`s Guide to Managing Market and Credit Risk. Hoboken, NJ: John Wiley & Sons.

Allen, S., Boudoukh, J. & Saunders, A. (2004). Understanding Market Credit and Operational Risk. Oxford, England: Blackwell Publishing.

Angelidis, T., Benos, A. & Degiannakis, S. (2004). The use of GARCH models in VaR estimation. Statistical Methodology, 1 (12), 105–128. http://dx.doi.org/10.1016/j.stamet.2004.08.004

Basel Committee. (1996). Overview of the amendment to the capital accord to incorporate market risk. Basel, Switzerland: Basel committee on banking supervision.

Bohdalová, M. & Greguš, M. (2012). Stochastické analýzy finančných trhov [Stochastic analysis of the financial markets]. Bratislava, Slovakia: Comenius University Press.

Culp, C., Mensink, R. & Neves, M. P. (1999). Value at Risk for Asset Managers. Derivatives Quarterly, 5 (2).

De Schepper, A. & Heijnent, B. (2010). How to estimate the Value at Risk under incomplete information. Journal of Computational and Applied Mathematics, 233, 2213-2226. http://dx.doi.org/10.1016/j.cam.2009.10.007

Dempster, M. & Howard, A. (2002). Risk Management Value at Risk and beyond. Cambridge, England: Cambridge University Press. http://dx.doi.org/10.1017/CBO9780511615337

Dowd, K. (2002). Measuring Market Risk. Chichester, England: John Wiley & Sons.

Duffie, D. & Pan, J. (1997). An overview of value at risk. Journal of Derivatives, 4 (3), 7-49. http://dx.doi.org/10.3905/jod.1997.407971

Fong, G. F. & Vasicek, O. A. (1997): Portfolio Risk Management. Advanced in fixed income valuation modelling and risk management. (317-326). New Hope, PA: Frank J. Fabazzi Associates.

Guermat, C. & Harris, R. D. F. (2001). Robust Conditional Variance Estimation and Value-at-Risk. Journal of Risk, 4, 25-41. Retrieved from: http://dx.doi.org/10.2139/ssrn.254569

Hubbert, S. (2012). Essential Mathematics for Market Risk Management. Chichester, England: John Wiley & Sons. PMid:23097880

Jorion, P. (2007). Value at Risk. The New Benchmark for Managing Financial Risk. New York, NY: McGraw-Hill. PMid:17055638

Jorion, P. (2009). Financial Risk Manager Handbook. Chichester, England: John Wiley & Sons.

Korkmaz, T. & Aydın, K. (2002). Using EWMA and GARCH methods in VaR calculations. Application on ISE-30 index ERC/METU 6. Paper presented at the International Conference in Economics, held in Ankara, Turkey, September 11-14, 2002. Retrieved March 10, 2013, from http://content.csbs.utah.edu/~ehrbar/erc2002/pdf/P161.pdf

Lin, L. (2008). Assessing the Performance of Value at Risk Models in Chinese Stock Market. (Doctoral dissertation). Available at University of Nottingham, Business School.

Linsmeier, T. J. & Pearson, N. D. (1996). Risk Measurement. An Introduction to Value at Risk. (Working Paper). Chicago, IL: University of Illinois Press. http://dx.doi.org/10.2469/faj.v56.n2.2343

Linsmeier, T. J. & Pearson, N. D. (2000). Value at Risk. Financial Analyst Journal, 3 (4).

Longerstaey, J. & Spencer, M. (1996). Risk Metrics – Technical document. New York, NY: Morgan Guaranty Trust Company of New York.

Lu, Z., Huang, H. & Gerlach, R. (2010). Estimating Value at Risk, From JP Morgan`s Standard-EWMA to skewed-EWMA Forecasting OME. Working Paper No: 01/2010. Faculty of Economics and Business, The University of Sydney, Sydney, Australia.

McNeil, A. J., Frey, R. & Embrechts, P. (2005). Quantitative Risk Management. Princeton, NJ: Princeton University Press.

Nelson, D. & Foster, D. (1994). Asymptotic filtering theory for multivariate ARCH models. Econometrica, 62, 1-41. http://dx.doi.org/10.2307/2951474

Pearson, N. D. (2002). Risk budgeting. Portfolio Problem Solving with Value-at-Risk. New York, NY: John Wiley & Sons.

Penza, P. & Bansal, V. K. (2001). Measuring Market Risk with Value at Risk. New York, NY: John Wiley & Sons.

Rossignolo, A. F., Fethi, M. D. & Shaban, M. (2012). Value-at-Risk models and Basel capital charges. Evidence from Emerging and Frontier stock markets. Journal of Financial Stability, 8 (4), 303-319. http://dx.doi.org/10.1016/j.jfs.2011.11.003

Zmeškal, Z. (2005). Value at risk methodology of international index portfolio under soft conditions (fuzzy-stochastic approach). International Review of Financial Analysis, 14, 263-275. http://dx.doi.org/10.1016/j.irfa.2004.06.011




DOI: http://dx.doi.org/10.12955/cbup.v1.11

Refbacks

  • There are currently no refbacks.


Print ISSN 1805-997X, Online ISSN 1805-9961

(c) 2016 Central Bohemia University