
CBU INTERNATIONAL CONFERENCE ON INTEGRATION AND INNOVATION IN SCIENCE AND EDUCATION 

APRIL 7-14, 2013, PRAGUE, CZECH REPUBLIC   WWW.CBUNI.CZ, OJS.JOURNALS.CZ 

9 

 

COPULA BASED VaR APPROACH FOR EUROPEAN STOCKS 

PORTFOLIO 

Mária Bohdalová, Michal Greguš, Comenius University in Bratislava, 

maria.bohdalova@fm.uniba.sk, michal.gregus@fm.uniba.sk 

 

The paper gives stochastic assessments of the financial crisis and discusses the Value at Risk European 

stocks from the point of view of copula based approach. Copula techniques can be based on the connection 

between rank correlation and certain one–parameter bivariate copulas. This relation allows easy calibration 

of the parameters. We use more general numerical calibration techniques that are based on maximum 

likelihood estimation (MLE). Using this approach we want to estimate VaR of the EU stocks portfolio 

using Monte Carlo simulation. The focus will be on modelling the interdependence between two risk factor 

returns. We suppose that the risk factor returns have some assumed marginal distributions, which need not 

be identical, and their dependency is modelled with copulas. We find that standard parametric copula 

functions (such as Gaussian) are not able to provide a good fit to the data. This is especially true when one 

or more of the marginal distributions has fat tails. We overcome this problem by fitting a t–copula with 

different marginal which can approximate any possible shape for the joint density. 
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Introduction 

Understanding the joint distribution of risk factors is fundamental for investigating and computing the 

Value–at–Risk (VaR) of portfolios. The accuracy of this measure has crucial importance in 

determining the capital requirement for financial institutions. If we analyse the distribution of losses, 

one verifies that large losses are influenced by simultaneous losses in risk factors. Therefore, the 

distribution of the losses depends on joint distribution of risk factors. Modelling dependence has the 

key importance to all economic fields in which uncertainty plays a large role. It is a crucial element of 

decision making under uncertainty and risk analysis. Consequently, an inappropriate model for 

dependence can lead to suboptimal decisions and inaccurate assessments of risk exposures. 

Traditionally, correlation is used to describe dependence between random variables, but recent studies 

have ascertained the superiority of copulas to model dependence.  

In this paper we use multivariate data and attempt to model the joint distribution of daily log returns of 

two European market indices DAX and EURO STOXX 50. We find that standard parametric copula 

functions (such as Gaussian) are not able to provide a good fit to the data. This is especially true when 

one or more of the marginal distributions has fat tails. We overcome this problem by fitting a t–copula 

with different marginal which can approximate any possible shape for the joint density. 
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Literature review 

Kole (2005) has shown the superiority of copulas to model dependence, as they offer much more 

flexibility than the correlation approach. Frees and Valdez (1998) shown the use of copulas in 

actuarial risk analyses and Embrechts, McNeil and Straumann (1999) introduced the copulas into 

finance. Li (2000) has studied the problem of default correlation in credit risk models and has shown 

that “the current Credit Metrics approach to default correlation through asset correlation is equivalent 

to using a normal copula function”. In the Risk special report of November 1999 on Operational Risk, 

Ceske and Hernández (1999) explain that copulas may be used in conjunction with Monte Carlo 

methods to aggregate correlated losses. 

An important reason to consider other copulas than the correlation–implied Gaussian copula is its 

failure to capture dependence of extreme events. Especially in the financial crisis, because sometimes 

extreme losses occur, the financial data are approximated over skewed distribution. Due to financial 

crisis in 2008, U.S. stock markets have suffered their worst volatile trading days in memory, and 

various stock indices have fallen dramatically. The Dow Jones and S&P 500 are on course to record 

their worst yearly returns since the Great Depression. Meanwhile, U.S. stock index futures fluctuated a 

day after the Dow Jones snapped a seven–day losing streak. There is a number of empirical evidence 

that the dependence between many important asset returns is non–normal in crisis. Pearson correlation 

coefficient is not an appropriate dependence measure for very fat–tailed risks when extreme losses 

occurred. This inadequacy of correlation requires an appropriate dependence measure. Copula method 

may be the right tool for the job, which is applied to research on non–normal dependence of financial 

time series (Chai & Guo, 2011). However, still no consensus that copula is more suitable for use in 

specific applications, or which methods for estimating the copula parameters are better. 

A precise estimation of parameters in copula models is crucial to dependence modelling (Zhang & Ng, 

2010). In the literature several ways, based on the statistical inference theory, were developed to 

estimate the parametric and non–parametric copula models (Joe, 1997). These approaches can be 

mainly classified into three types: parametric approaches (e.g. the maximum likelihood estimation), 

semi–parametric estimation and non–parametric methods. The maximum likelihood estimations 

usually include the exact maximum likelihood method (EML) and the inference for margins method 

(IFM). The EML method for the parameter estimation of complex copula models, such as a high–

dimensional copula model, could be computationally intensive while using traditional numerical 

methods. Because, the EML jointly estimates the marginal distribution parameters and the dependence 

structure (copula) parameters, the solutions from traditional optimization approaches tend to stuck in 

local optima. Joe (1997) proposed the IFM approach, a computationally simpler approach that first 

estimates the marginal distribution parameters and then the copula parameters. However, the 

estimators from the IFM method do not hold equality with the EML estimation in general. Due to this 

reason, the former set of estimates is usually used as a starting guess for the „two–step “maximum 

likelihood method (Zhang & Ng, 2010). 

The primary motivation for this paper is as follows. Copula models for financial time series are used to 

extract the dependence between two market stock indices and its underlying asset when financial crisis 

breaks out. In this study, we empirically examine the log return time series of DAX and EURO 

STOXX 50 market indices. It is concluded that, these stock indices are not normally distributed in 

financial crisis and that the t–copula function can provide a better fit to the empirical data. In this 

paper we compare EML with IFM estimation results for estimation of copula parameters.  
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The paper is structured as follows. Next section gives data and methodology of this paper. A briefly 

describes copula functions as an intuitive and practical way to simplify the problem of modelling 

multivariate distributions and the maximum likelihood methods for estimation of the copula 

parameters. Section Results and Discussion reports our results for DAX and EURO STOXX 50 

market indices. Section Conclusion concludes and discusses several possible avenues of future 

research. 

Data and methodology  

Assume that we should determine the VaR of a market indices portfolio equally proportioned from 

DAX and EURO STOXX 50, for next two weeks (10 trading days) for confidence level α=0.01 and 

α=0.05. The sample period for historical data is January 2, 2008 to March 5, 2013 (denoted as 

1…1328). Data has been downloaded from Bloomberg. DAX (Deutscher Aktien IndeX) is a stock 

market index consisting of 30 major German companies trading on the Frankfurt Stock Exchange, the 

most important stock index of DTB (Deutsche boerse) in Germany. EURO STOXX 50 Index is 

leading Blue-chip index for Eurozone, provides a Blue-chip representation of supersector leaders in 

the Eurozone. The test data is the natural logarithm return of the closing price. All the estimation 

processes are carried out in Wolfram Mathematica v. 9. 

The summary statistics is given in Table 1 and gives, for example, the annualized mean, annualized 

standard deviation, median, max, min, skewness, kurtosis, Jarque–Bera test of normality. In both 

cases, the null hypothesis of normality is rejected at any level of significance, and there is evidence of 

significant excess kurtosis of the return series. This indicates that the distributions of these return 

series are non–Gaussian. Daily log returns series and their histograms are shown in Figure 1 and 

Figure 2 respectively. 

Figure 1: Log return time series, DAX (left), EURO STOXX 50 (right) (2.1.2008 – 5.3.2013) 

  

Source: Calculated by the authors with Wolfram Mathematica software using data from Bloomberg 

Maximum likelihood for copula parameters estimation 

Copulas were initially introduced by (Sklar, 1959). Let H denote a joint distribution of function with 

margins F1, …, Fd, then there exists an unique copula C  

 H(x1;…, xd) = C(F1(x1); …; Fd(xd));  (1) 
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if F1; …; Fd are continuous functions. The copula model interprets multivariate distributions by 

coupling the marginal distribution function )(,),( 11 dxx xFxF
d

  with the dependence structure C 

(Nelsen, 1998, referenced by Zhang & Ng, 2010).  

Table 1: Summary statistics of daily log returns of European market stocks indices. (2.1.2008 – 

5.3.2013)  

Descriptive statistics DAX EURO STOXX 50 

Mean -0.00001 -0.00032 

Mean Annualized -0.00389 -0.08004 

Median 0.000681 -0.00018 

Max 0.107975 0.099599 

Min -0.07433 -0.0825 

Stand. Dev. 0.01693 0.016771 

Stand. Dev. Ann 0.267786 0.265178 

Skewness 0.120292 0.009396 

Kurtosis 8.263859 7.120973 

Jarque–Bera t stat 1556.472 952.4647 

Jarque–Bera p value 0.0000 0.0000 

Sample size 1328 1328 
 

Source: Calculated by the authors with Wolfram Mathematica software using data from Bloomberg 

 

Figure 2: Histograms of log return time series, DAX (left), EURO STOXX 50 (right), (2.1.2008 – 

5.3.2013) 

  

Source: Calculated by the authors with Wolfram Mathematica software using data from Bloomberg 

In other words, the joint distribution can be expressed by combining the marginal distributions with 

the dependence structure, yielding  

 C(u1,…, ud) = H(F1
–1(u1), …, Fd

–1(ud));  (2) 
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with u  [0; 1]d, and Fi
–1(·) denoting the inverse of the marginal distribution Fi(·). In this paper, the 

general Student t distribution and Student t copula are used to model the marginal distribution Fi(·) and 

the dependence structure C(·), respectively. 

Particularly in finance and risk management, the Student t distribution has been used instead of the 

normal distribution, because of its fat tail behaviour, which can be applied to capture financial extreme 

events (Bollerslev, 1987, referenced by Zhang & Ng, 2010). The marginal distributions of a 

multivariate t distribution are univariate Student t distributions. The probability density function f(·) of 

general Student t distributions can be written as 
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where Γ(·) is the Gamma function, η denotes the marginal degrees of freedom, μ and σ represent 

location and dispersion of the marginal distribution respectively (Meucci, 2005, referenced by Zhang 

& Ng, 2010). 

According to (Sklar, 1959, referenced by Zhang & Ng, 2010), the Student t copula of the random 

vector u can be expressed as 
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where ρi,j is a correlation coefficient, with i, j  1, …, d, composed into covariance matrix Σ, tν,ρ (·) 

denotes the distribution function H(·) and tν
–1(·) represents the inverse od the marginal t distribution 

function Fi
-1(·). The corresponding Student t copula density 
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can be written as  
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We ought to note that, if the degree of freedom η of the marginal distribution of equation (3) is 

consistent with the degree of freedom ν in copula function in (6), the multivariate distribution is 

referred to as a multivariate t distribution (McNeil et al., 2005). 

The complete copula model has two parts, the marginal cumulative distribution Fj(·) and a joint 

cumulative distribution H(·). The distribution parameters of the complete copula models should be 

estimated jointly according to the exact maximum likelihood (EML) method. 

The log-likelihood function m
j  of the j-th Student t marginal distribution can be written as 
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where n0 is the observation number, μj, σj, ηj denote location, dispersion and degree of freedom of the j-

th marginal distribution, respectively. The log-likelihood function C  of the Student t copula density 

in equation (6) can be written as 
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where d denotes the dimension of the risk factors, yj,i represents the inverse transform of Student t 

distribution with ν degree of freedom for the i-th observation of the j-th risk factor after a strictly 

increasing transformation of the original observation xj,i. 

ELM estimation for complex copula models could be computationally demanding and therefore we 

can use the inference for margins (IFM) approach, which can obtain the estimates more simply, but at 

the cost of a higher bias. The IFM approach first estimates the parameters of marginal distributions, 

such as the one in equation (8) (Zhang & Ng, 2010). Then the variables xj;i are transferred into yj;i 

based on the estimated parameters of the marginal distribution. After that, the inference of the copula 

parameters in equation (8) is performed while taking the yj;i as input observations. The IFM approach 

is a two-step procedure and it can be implemented by using traditional numerical approaches. 

However, the IFM approach cannot guarantee the parameter ηj in equation (7) and the ν in equation (8) 

being consistent. In contrast to the IFM approach, the EML estimation overcomes the barrier since it 

estimates the marginal distributions and the copula density jointly. The objective function used in the 

EML approach is simply defined as 

 ,
1





d

j

m
j

C   (9) 

which has been discussed in the work of (Zhang & Ng, 2010b). 

Estimation of the copula parameters is based on the maximization of the objective function, i.e. the 

log–likelihood functions from the complete copula model defined in equation (9). The fitness of the 

final objective function is defined as the sum of log–likelihood values of both the marginal and copula 

density functions. The fitness value of the objective function U depends on μj , σj , ρ and ν, thus the 

optimization problem can be simply formulated as 

 lU 
 ,,,

max  (10) 

subject to  1 > ρ > –1,  ν>3. 

In practice, when ν is greater than 30, the Student t copula can be approximated by using the Gaussian 

copula, which does not consider any tail dependence (Fantazzini, 2009, referenced by Zhang & Ng, 

2010). When ν is smaller than 3, the third and fourth moments of the distribution are not defined. 



CBU INTERNATIONAL CONFERENCE ON INTEGRATION AND INNOVATION IN SCIENCE AND EDUCATION 

APRIL 7-14, 2013, PRAGUE, CZECH REPUBLIC   WWW.CBUNI.CZ, OJS.JOURNALS.CZ 

15 

 

Therefore, the minimum value of ν is constrained as greater than 3 in the maximum likelihood 

estimation. In order to solve the optimization problem, two population based evolutionary methods are 

utilized to search optimal solutions for the copula model while taking the marginal distributions and 

the dependence structure into account simultaneously. 

Correspondence between Copulas and Rank Correlation 

McNeil (2005) referenced by Alexander (2008) showed that Kendall’s tau (τ) has a direct relationship 

with a bivariate copula function C(u1,u2) as follows: 

     1,,4 21
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0
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If the copula depends on one parameter then (11) provides a means of calibrating this parameter using 

a sample estimate of the rank correlation. Equation (11) has simple solution for instance for the 

bivariate normal copula. For the correlation ρ from the identity (11) yields  

 
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Note that equation (12) can be applied to the Student t copula and to the copula based in an elliptical 

distribution (Lindskog et al., 2003, referenced by Alexander, 2008). These authors have showed that 

for the normal copula there is a relationship between the correlation parameter and Spearman’s rho 

(ρS): 

 
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Selection the best copula 

A straightforward way to determine which copula provides the best fit to the data is to compare the 

values of the optimized likelihood function. But the more parameters in the copula, the higher the 

likelihood tends to be. So to reward parsimony in the copula specification the Akaike information 

criterion (AIC) or the Bayesian information criterion (BIC) can be applied. The AIC is defined as  

 ln22  kAIC  (14) 

where ln  is the optimized value of the log likelihood function and k is the number of parameters to 

be estimated; and the BIC is defined as 

  ln2ln1   TkTBIC  (15) 

where T is the number of data points. Then the copula that yields the lowest value of the AIC or the 

BIC is considered to be the best fit (Alexander, 2008). 

Results and Discussion 

Figure 3 shows a scatter plot of daily log return on DAX index on the horizontal axis and the daily log 

return on EURO STOXX 50 index on the vertical axis. We use these data to calibrate the Student t 

copula. We assume the marginals are Student t distributed. 



CBU INTERNATIONAL CONFERENCE ON INTEGRATION AND INNOVATION IN SCIENCE AND EDUCATION 

APRIL 7-14, 2013, PRAGUE, CZECH REPUBLIC   WWW.CBUNI.CZ, OJS.JOURNALS.CZ 

16 

 

Figure 3: Scatter plot on DAX and EURO STOXX 50 indices log return time series, (2.1.2008 – 

5.3.2013) 

 

Source: Calculated by the authors with Wolfram Mathematica software using data from Bloomberg 

We found the sample mean and standard deviation for both log returns series. The degree of freedom 

was obtained for standardized returns (with zero mean and unit variance) using maximum likelihood 

to fit a standardized t distribution to both standardized log returns series. These calibrated parameters 

are shown in Table 2. 

Table 2: Calibrated parameters for Student t  marginals (2.1.2008 – 5.3.2013) 

Series Mean 
Standard 

Deviation 

Degree of 

freedom 

DAX -0.00001 0.01693 3.4475 

EURO STOXX 50 -0.00032 0.01677 3.7635 
 

Source: Calculated by the authors with Wolfram Mathematica software unsing data from Bloomberg 

Now we calibrate the copula parameters. The bivariate Student t copula has two parameters: the 

correlation ρ and the degrees of freedom ν. In this paper we compare the calibration of the copula 

parameters under two different approaches:  

1. EML approach: we have calibrated both ρ and ν simultaneously using MLE. 

2. IFM approach: we calibrate ρ first using the relationship (12) with Spearman`s rho and then 

we use MLE to calibrate ν. 

The results are shown in Table 3. The lowest value of the AIC or the BIC is obtained for EML 

approach. 

Table 4 shows VaR results for 1% and 5% 10–days VaR. We compare the Normal copula with normal 

or t –marginals with Student t –copula with t marginals. Normal copula VaR with normal marginals 

gives the lowest estimate. Student t-copula with t–marginals gives the highest estimate of VaR thus 

taking into account fat tails. 
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Table 3: Copula parameters calibrations, 2.1.2008 – 5.3.2013 

 

Student t Copula 

(EML) 

Student t Copula 

(IFM) 

ν ρ Ν ρS 

Calibrated parameter 6.6227 0.97722 6.66433 0.95447 

AIC -4495.64 −4300.96 

BIC -3.37745 −3.23085 
 

Source: Calculated by the authors with Wolfram Mathematica software using data from Bloomberg 

 

Table 4: VaR of the portfolio  2.1.2008 – 5.3.2013 

 Normal copula Student t- copula 

Normal marginals t- marginals t- marginals 

1% 10–day VaR 0.81% 1.51% 1.52% 

5% 10–day VaR 0.55% 0.77% 0.78% 
 

Source: Calculated by the authors with Wolfram Mathematica software using data from Bloomberg 

Conclusion 

In this paper we have proposed Student t copula approach to calculate VaR of the portfolio. We have 

applied two estimation approaches EML and IFM to calibrate copula parameters. Our results indicate 

that EML approach gives a better estimate of copula parameters. For VaR estimation we compare 

three approaches – we use normal copula (standard approach), normal copula with Student marginal 

and Student t copula with Student t marginals (calibrated using EML approach). Student t copula 

could be used if returns extremely oscillate. Through a simple simulation study, it has been proven that 

Student t copula with Student t marginals gives reasonably good estimation of VaR. 
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